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1 Expected Utility motivation

1. Expected Value principle: problem of points or problem of division ofthe stakes posed by Chevalier de Mere to Blaise Pascal https://en.
wikipedia.org/wiki/Problem_of_points; Pascal exchaged letters withPierre de Fermat and found a solution which was the basis of ExpectedValue principle. Then Christiaan Huygens (1657) published the firsttreatise on probability. Explicitly the term Expected Value was first usedby Laplace (1814). https://en.wikipedia.org/wiki/Expected_value.Since then it was widely believed that EV is a good measure for theattractiveness of a gamble. Two examples:
• Chevalier de Mere problem: Should you bet 1:1 on at least onesix occuring in four independent throws of a dice? Or should youbet 1:1 on at least one pair of sixes occuring in twenty four throwsof a dice?
• Chuck-a-luck: one throw of three dices; three sixes: you win 300;two sixes: you win 200; one six: you win 100; no sixes: you lose100. Should you accept?

2. Saint Petersburg paradox: Nicolas Bernoulli (1713) in a letter to Pierrede Montmort suggested the following lottery: you throw a fair coinmany times. Your payoff is 2k, k ∈ N, if tail occurs on k-th throw for thefirst time. https://en.wikipedia.org/wiki/St._Petersburg_paradoxWhat would be a fair price to pay the casino for entering the game?Expected Value is infinite: EV = 12×2+ 14×4+...+ 12k×2k+... = 1+1+... =
∞. Yet people rarely want to pay more than 10 to play this game. DanielBernoulli (1738) proposed a solution: "The determination of the valueof an item must not be based on the price, but rather on the utility ityields". Instead of expected value of the lottery prize, he suggested touse expected value of the utility of wealth and suggested that this utilityis logarithmic: u(w) = log(w) where w > 0 is the decision maker’swealth.

3. Relative returns: We can arrive at the same conclusion by consider-ing relative returns instead of nominal income. Suppose first that thedecision maker invests the amount S and wants his long-term relativereturn to be at least 1. Define a multiplicative lottery, in which the re-turn equals 2k/S, with probability 12k , for k ∈ N, if tail occurs on k-th
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throw for the first time. The average relative return is calculated by ageometric mean of a multiplicative lottery. The idea is that if there isequal chance of doubling your wealth (return of 2) or otherwise loos-ing half of it (return of 12 ), the average relative return is (12 × 2)0.5 = 1(using geometric mean) instead of 12 × 2 + 12 × 12 = 54 (using simplearithmetic mean). In our case we use a generalized geometric meanwith (possibly) unequal weights/probabilities. We obtain the following:

∞∏
i=1
(2i
S

)1/2i
≥ 1.

After taking the logarithm on both sides we get:
∞∑
i=1

12i log(2i) ≥ log(S).
Note that it is the expected logarithm of the lottery payoff as suggestedby Daniel Bernoulli. Now It is a matter of some algebraic manipula-tions to show that S ≤ 4. Suppose that we use the logarithm base 2for convenience:

∞∑
i=1

12i log(2i) = 12 × 1 + 14 × 2 + 18 × 3 + ...

To calculate this sum we shall use a neat trick. Note that 12 + 14 + 18 +116 ... = 1. On the other hand 14 + 18 + 116 ... = 12 , and 18 + 116 ... = 14 .Continuing this way, we can see that summing over all these sums wewill get the sum we are looking for, and since summing the left handside of these sums is the same as summing the right hand sides ofthese sums we get:
∞∑
i=1

12i log(2i) = 12 × 1 + 14 × 2 + 18 × 3 + ...

= 1 + 12 + 14 + ... = 2
Finally we get 2 ≥ log(S) or S ≤ 4, as claimed. Hence we see thatthe amount invested should not be more than 4 if we want to ensureaverage return of at least 1.

4. Relative returns and buying/selling price: Denote a lottery by x. Math-ematically it is equivalent to finite support random variable. In generalwe need initial wealth W (a budget) to cover possible losses result-ing from playing a lottery. Suppose that preferences are logarithmic.
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By the argument made above logarithmic preferences correspond tothe decision maker who cares about relative returns and calculatesaverage return or geometric mean. Selling price of lottery x is theminimal price the agent is willing to accept to forego the right to playthis lottery, i.e. a minimal S ∈ R, for which W + S %W + x. Such S isdetermined by solving the following equation:

log(W + S) = E log(W + x).
Note that the calculation we made in point 3 above is a special caseof selling price S, when W = 0. On the other hand, buying price oflottery x is the maximal price the agent is willing to pay for the rightto play this lottery, i.e. a maximal B ∈ R, for which W + x − B % W.Such B is determined by solving the following equation:

E log(W + x− B) = log(W ).
5. As an example consider lottery (+120, 12 ;−100, 12 ) (equal chance of win-ning 120 or losing 100) and W = 1000. Selling price is calculated as:

12 log(900) + 12 log(1120) = log(1000 + S)(900× 1120)0.5 − 1000 = S

So S = 3.992. Similarly buying price is calculated as:
12 log(900− B) + 12 log(1120− B) = log(1000)log [(900− B)(1120− B)]0.5 = log(1000)900× 1120− B(900 + 1120) + B2 = 10002

So B = 3.968.
6. Relative returns and riskiness measure: Suppose that preferences arelogarithmic so that we are interested in relative returns. Let x be a real-valued random variable with finite support such that it has positiveexpected value (Ex > 0) and negative consequences in the support(P[x < 0] > 0). Call such RV lottery. For such lottery there is a unique
W∗ such that W∗+x ∼W∗. (you are asked to prove it). It is determinedby solving the following equation:

E log(W∗ + x) = log(W∗).
Such W∗ is called the riskiness measure of x and will be denotedby R(x). For more on the riskiness measure see the article http:

//www.ma.huji.ac.il/hart/abs/risk.html?

4

http://www.ma.huji.ac.il/hart/abs/risk.html?
http://www.ma.huji.ac.il/hart/abs/risk.html?


TPD Michał Lewandowski
7. As an example consider lottery (+120, 12 ;−100, 12 ). This lottery satisfiesthe conditions mentioned above Ex = 10 > 0 and P[x < 0] = 12 > 0. Ob-serve that if W = 200, then 12 log(100) + 12 log(320) < log(200) becauselog [100200 × 320200]0.5 = log [3240]0.5 < 0. On the other hand if W = 1000,then 12 log(900) + 12 log(1120) < log(1000) because log [0.9× 1.12]0.5 =log [1.008]0.5 > 0. Finally it is easy to verify that W∗ = 600, becauselog [500600 × 720600]0.5 = log [56 × 65]0.5 = 0.
8. Define buying price and selling price for a lottery x as functions ofwealth and denote it by B(W,x) and S(W,x), respectively. There aresimple relationships between riskiness measure R and buying andselling prices:

S(W,x− B(W,x)) = 0
S(W − B(W,x),x) = B(W,x)
B(W + S(W,x),x) = S(W,x)

R(x− B(W,x)) = W

R(x− S(W,x)) = W + S(W,x)
Make sure that you understand why the above relationships hold.
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2 Expected Utility Theory

In this section we follow Kreps Microeconomic Theory textbook.
1. Let X be the set of prizes. A simple probability distribution P : X Ï[0, 1] is specified by:

a) a finite subset of X, called the support of P and denoted bysupp(P), andb) for each x ∈ supp(P) a number P(x) > 0, with∑x∈supp(P) P(x) = 1.
The set of simple probability distributions on X will be denoted by
L(X).

2. Degenerate lottery: the lottery that gives the prize x with probabilityone will be written by δx .
3. Mixing operation: given P,Q ∈ L(X) and α ∈ [0, 1], we define αP +(1−α)Q ∈ L(X), such that (αP+(1−α)Q(x) = αP(x)+ (1−α)Q(x), for
x ∈ X.

4. Let�⊆ L(X)×L(X) be a strict preference relation. Let %,∼⊆ L(X)×L(X)be defined as: P % Q, if Q � P, P ∼ Q, if P � Q ∧Q � P. We imposethe following axioms on �:
Axiom 1 (Weak order). � is asymmetric (P � Q Ñ Q � P) and negatively
transitive (P � Q ∧Q � RÑ P � R)

Remarks:
i) Reminder: � is asymmetric if and only if % is complete, and � isnegatively transitive if and only if % is transitive. (Very simple proofsare left for the reader.)
ii) P ∼ Q means that the DM is equally happy with P as she is with

Q. It does not mean that she is unable to judge. Completeness re-quires that she is always able to express her preferences. Violations ofcompleteness are analyzed by Aumann (1962) http://www.jstor.org/
stable/1909888 and Dubra, et al. (2004) http://www.sciencedirect.
com/science/article/pii/S0022053103001662

iii) violations of transitivity are usually excluded based on the moneypump argument (but it requires continuity as well): suppose that A �
6
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B � C � A. Then I propose the following deal: take A, exchange Afor C and pay me ε , exchange C for B and pay me ε , exchange B for
A and pay me ε. By continuity I can always find ε > 0 small enoughsuch that the DM is willing to do that. But with each cycle she looses3ε > 0 for sure.

iv) Weak order (plus a technical axiom of Separability – see Cantor, 1915)alone gives us the following representation: � satisfies Axiom 1 andSeparability if and only if there exists a function U : L(X) Ï R, suchthat
P � Q ⇐Ñ U(P) > U(Q), for any P,Q ∈ L(X).

Moreover, this function is unique up to strictly increasing transforma-tion.
Axiom 2 (Substitution/Independence). Let P,Q ∈ L(X) such that P � Q.
Let α ∈ (0, 1), and R ∈ L(X). Then αP + (1− α)R � αQ + (1− α)R.

Axiom 3 (Archimedean/Continuity). Let P,Q,R ∈ L(X) such that P � Q �
R. Then there exist numbers α, β ∈ (0, 1), such that αP + (1 − α)R � Q �
βP + (1− β)R.

Theorem 1. A preference relation �⊆ L(X)× L(X) satisfies Axioms 1-3 if
and only if there is a function u : X Ï R such that:

P � Q ⇐Ñ
∑

x∈supp(P)u(x)P(x) > ∑
x∈supp(Q)u(x)Q(x).

Moreover, if u provides a representation of � in this sense, then v does
as well if and only if there exist a, b ∈ R, a > 0, such that v(·) ≡ au(·) +b.

Proof: We assume that there are b,w ∈ X, such that b � P � w, for any
P ∈ L(X). Furthermore we assume that b � w.
Lemma 1. For any numbers α, β ∈ [0, 1], αδb + (1−α)δw � βδb + (1− β)δw
if and only if α > β.

Proof. We prove the following intermediate result:
P � Q, α ∈ (0, 1)Ñ P � αP + (1− α)Q � Q. (1)

To prove it, apply Independence twice. Now we prove the Lemma. If oneonly of α = 1, β = 0 holds, then Lemma 1 reduces to (1). If both hold, theconclusion coincides with the assumption. Assume that 0 < β < α < 1. Then
7
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by (1), P � αP+(1−α)Q � Q. Note that βP+(1−β)Q = γ[αP+(1−α)Q]+(1−
γ)Q, with 0 < γ = β/α < 1. So by (1), αP+(1−α)Q � βP+(1−β)Q. To provethe converse implication, we use the proven implication and completenessof %.
Lemma 2. For any degenerate lottery δx , there is α ∈ [0, 1], such that
δx ∼ αδb + (1− α)δw .

Proof. Take any x ∈ X and consider two sets:
{α ∈ [0, 1] : αδb + (1− α)δw � δx]}
{α ∈ [0, 1] : αδb + (1− α)δw ≺ δx]}

These sets are nonempty (see assumption), open (by continuity A3) anddisjoint by asymmetry of �. Hence they cannot cover the whole interval[0, 1].There must be a number αx ∈ [0, 1], such that αxδb + (1− αx)δw ∼ δx .(Then Lemma 1 implies uniqueness of αx .)
Lemma 3. If P ∼ Q, and R ∈ L(X), α ∈ [0, 1], then αP + (1 − α)R ∼
αQ + (1− α)R.

Proof. We prove the following intermediate result:
P ∼ Q, α ∈ (0, 1)Ñ P ∼ αP + (1− α)Q ∼ Q. (2)

By contradiction suppose that P ∼ Q, but P � αP + (1 − α)Q =: S. Let
T := 1/2P + 1/2S. By (1), P � T � S. On the other hand, Q ∼ P � T , and Sis between Q and T , so for some δ ∈ (0, 1), S = δQ+ (1− δ)T . Since Q � T ,by (1) we get S � T , a contradiction.Now we prove the Lemma. If R ∼ P ∼ Q, then the Lemma coincideswith (2). Assume that R � P ∼ Q, and α ∈ (0, 1). Define S := αP + (1− α)Rand T := αQ + (1− α)R. By contradiction suppose that S � T . Since R � P,by (1), R � S. So R � S � T . By continuity (A3), there is β ∈ (0, 1), suchthat S � V , where V := βR + (1 − β)T . Note that V = βR + (1 − β)T =
βR + (1− β)(αQ + (1− α)R) = (α− αβ)Q + (1− α+ αβ)R.Let W := βR + (1 − β)Q. By (1), R � W � Q ∼ P. By independence(A2), αW + (1 − α)R � αP + (1 − α)R = S. Observe that αW + (1 − α)R =
α(βR + (1 − β)Q) + (1 − α)R = (α− αβ)Q + (1− α+ αβ)R = V . So V � S, acontradiction.

The rest if easy: For every prize x, define u(x) ∈ [0, 1], such that:
δx ∼ u(x)δb + (1− u(x))δw .
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This number u(x) will be the utility of the prize x. We know that this numberexists by Lemma 2 and is unique by Lemma 1. Take any lottery P.
Lemma 4. For u : X Ï R defined as above, for any lottery P, the following
holds:  ∑

x∈supp(P)u(x)P(x) δb +1− ∑
x∈supp(P)u(x)P(x) δw .

Proof. Take any P ∈ L(X), with n outcomes, denoted by xi and probabilitiesdenoted by pi. It can be written as: ∑piδxi , or for some j , pjδxj + (1 −
pj )∑i 6=j pi1−pj δxi . By Lemma 2 and 1 there is a unique number u(xj ), suchthat δxj ∼ u(x)δb + (1− u(x))δw . By Lemma 3,
pjδxj + (1− pj )∑

i 6=j
pi1−pj δxi ∼ pju(x)δb + pj (1− u(x))δw + (1− pj )∑

i 6=j
pi1−pj δxi

Having replaced δxj by a mixture of δw and δb, we can now do the samefor all xi, i 6= j . Each time we will get an equivalent lottery with a different
δxi , replaced by a mixture of δw and δb. By transitivity of indifference andLemma 3 each such new lottery is equivalent to P. After n steps, we obtain(∑i piu(xi))δb + (1−∑i piu(xi))δw , what was to be proved.

We now prove the uniqueness part of the Theorem. Suppose that U and
V are two affine functions that represent �⊆ L(X) × L(X). Take a lottery
P ∈ L(X). Since U represents preferences, U(P) = αPU(b) + (1 − αP)U(w),which implies that αP = U(P)−U(w)

U(b)−U(w) , and P ∼ αPδb + (1 − αP)δw . Since Vrepresents the same preferences
V (P) = V (αPδb + (1− αP)δw)= αPV (b) + (1− αP)V (w)

= U(P)−U(w)
U(b)−U(w)V (b) + U(b)−U(P)

U(b)−U(w)V (w)
= V (b)− V (w)
U(b)−U(w)U(P) + V (w)−U(w) V (b)− V (w)

U(b)−U(w)
Let c = V (b)−V (w)

U(b)−U(w) , and d = V (w)−U(w) V (b)−V (w)
U(b)−U(w) . We have proved that thereexist constants c, d, c > 0, such that V (·) = cU(·) + d.
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3 EU axioms and result - discussion

1. TODO: Machina triangle and independence
2. TODO: Discussion on other axioms
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4 Risk attitudes within Expected Utility

1. Let X be a subset of R. Instead of the probability distribution P ∈ L(X)we will now alternatively say lottery for a real-valued random variable
x, whose associated distribution is P. Let X be the set of all suchrandom variables. A degenerate random variable with one elementsupport x∗ ∈ X will be denoted simply by x∗.

2. An individual whose preference relation is �⊆ X ×X is risk averseif E[x] � x, for every lottery x. Suppose that the preference relationsatisfied the vNM axioms. It means that it can be represented by a vNMutility function u, and the condition for risk aversion can be written as:
u(E[x]) < Eu(x), for every non-degenerate x. This is Jensen’s inequality,which is true if and only if u is strictly concave. Similarly, the decisionmaker who always prefers a gamble to its expected value is risk-loving:
E[x] ≺ x, which leads to a convex utility function, and the DM who isindifferent between a gamble and its expected value is risk neutral:
E[x] ∼ x, which leads to a linear utility.

3. For a random variable x define its Certainy Equivalent CE(x) ∈ X,such that CE(x) ∼ x. Using the EU representation, we have u(CE(x)) =
Eu(x). Recalling what we have established in point 2. we can now say:the decision maker is risk-averse/risk neutral/risk-loving if CE(x) Q
E(x), for every non-degenerate gamble x.

4. Let x,y be two lotteries with the associated CDFs Fx and Fy , respec-tively. We say that x First Order Stochastically Dominates y, written
x �FOSD y, if Fx(t) ≤ Fy(t), for all t ∈ R, and Fx 6= Fy . In this case xcan be constructed from y be a series of upward mass shifts.

5. Let Px, Py be probability functions of x and y, respectively. First OrderStochastic Dominance is a partial order. Expected Utility is consistentwith FOSD if x �FOSD y implies Px � Py , for all x,y (or alternativelyit implies Eu(x) > Eu(y)).
Theorem 2. Expected Utility Theorem is consistent with FOSD if
and only if the vNM utility function is strictly increasing.

Proof. Let us suppose that u is continuously differentiable. We want toprove that Fx(t) ≤ Fy(t), for all t ∈ R, Fx 6= Fy implies Eu(x)−Eu(y) >
11
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0, if and only if u is strictly increasing. Let us integrate by parts:∫ +∞

−∞
u(t)(dFx(t)− dFy(t))

= [u(t)(Fx(t)− Fy(t))]+∞−∞ + ∫ +∞
−∞

u′(t)(Fy(t)− Fx(t))dt
= ∫ +∞

−∞
u′(t)(Fy(t)− Fx(t))dt

If u is strictly increasing, u′(t) > 0, for all t ∈ R. It implies that thesum above must be strictly positive by FOSD. Conversely, if the sumis strictly positive, then u′ must be strictly positive for all t ∈ R byFOSD.
6. Let x,y be two lotteries with the associated CDFs Fx and Fy , respec-tively. We say that x Second Order Stochastically Dominates y, written

x �SOSD y, if ∫ t−∞ Fx(s)ds ≤ ∫ t−∞ Fy(s)ds, for all t ∈ R, and Gx 6= Gy ,where Gx(t) = ∫ t−∞ Fx(s)ds and Gy(t) = ∫ t−∞ Fy(s)ds. In this case x canbe constructed from y be a series of Mean Preserving Spreads, i.e.
y = x + ε , where ε is a nondegenerate random variable with mean0, interpreted as: y is the same as x, except for y contains additionalpure risk ε.

7. Let Px, Py be probability functions of x and y, respectively. SecondOrder Stochastic Dominance is a partial order. Expected Utility isconsistent with SOSD if x �SOSD y implies Px � Py , for all x,y (oralternatively it implies Eu(x) > Eu(y)).
Theorem 3. Assume that u is strictly increasing. Expected Utility
Theorem is consistent with SOSD if and only if the vNM utility func-
tion is strictly concave.

Proof. Let us suppose that u is twice continuously differentiable. Wewant to prove that ∫ t−∞ Fx(s)ds ≤ ∫ t−∞ Fy(s)ds, for all t ∈ R, and Gx 6=
Gy , where Gx, Gy are defined above, implies Eu(x)−Eu(y) > 0, if andonly if u is strictly increasing and strictly concave. We already know
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the first intergretion. Let us integrate it by parts once more:∫ +∞
−∞

u(t)(dFx(t)− dFy(t))
= ∫ +∞

−∞
u′(t)(Fy(t)− Fx(t))dt

= [u′(t)∫ t

−∞
(Fy(s)− Fx(s))ds]+∞

−∞

−
∫ ∞
−∞

u′′(t) ∫ t

−∞
(Fy(s)− Fx(s))dsdt

If u is strictly increasing and strictly concave (u′ > 0, u′′ < 0), then bySOSD, the above difference must be strictly positive. Conversely, if theabove difference is strictly positive, then u′′ must be strictly negativeby SOSD.
8. Let u be the vNM utility of an agent. Risk aversion is measured lo-cally by Arrow (1965), Pratt (1964) absolute risk aversion coefficient
ARA(x) = −u′′(x)

u(x) .
• It could be measured by the curvature of the utility function −u′′.However, the utility function is unique up to strictly increasingaffine transformation. So if u and v both represent the samepreferences, v(·) = au(·) + b, where a, b ∈ R, a > 0. So −u′′(·)and −v′′(·) = −au′′(·) differ from each other by a, and they shouldnot. Hence we normalize the risk aversion measure by the firstderivative. Then −u′′(x)

u′′(x) = −v′′(x)
v′(x) = −au′′(x)

au′(x) , for all x ∈ R.
9. Let us characterize the decision maker who exhibits constant absoluterisk aversion, i.e. ARA(x) = −u′′(x)

u(x) = α, for all x ∈ R, where α ∈ R isa constant.
Proposition 1. The decision maker exhibits Constant Absolute Risk
Aversion (CARA) if and only if her preferences are represented by
a utility function uα : R Ï R, for some α ∈ R, normalized w.l.o.g. by
u(0) = 0 and u′(0) = 1 and defined as:

uα(x) = { 1−e−αx
α , α 6= 0,

x, α = 0.
Proof. We solve the differential equation ARA(x) = −u′′(x)

u(x) = α satisfy-ing the two initial conditions u(0) = 0 and u′(0) = 1. This is a Cauchy
13
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problem. The equation can be written as follows:

[logu′(x)]′ = −α |∫ dxlogu′(x) = −αx + c

u′(x) = exp(−αx + c)
where c represents the constant of integration. Using the first initialcondition u′(0) = exp(c) = 1, so c = 0. Integrating the equation onceagain we obtain: u(x) = −exp(−αx)

α + d, where d represents anotherconstant of intergration. Using the second initial condition u(0) = − 1
α+

d = 0, so d = 1
α and we get u(x) = 1−exp(−αx)

α , for α 6= 0. Finally usingthe d’Hospital rule:
lim
αÏ0 1−exp(−αx)

α
H= lim
αÏ0 x exp(−αx)1 = x

10. Let u be a vNM utility function. There is also another way to measurerisk aversion. This is via relative risk aversion coefficient RRA(x) =
−u′′(x)x

u′(x) , for all x ∈ [0,∞). Let us characterize the decision maker whoexhibits constant relative risk aversion, i.e. RRA(x) = −u′′(x)x
u(x) = β, forall x ∈ [0,∞), where β ∈ R is a constant.

Proposition 2. The decision maker exhibits Constant Relative Risk
Aversion (CRRA) if and only if her preferences are represented by
a utility function uβ : [0,∞)Ï R, for some β ∈ R, normalized w.l.o.g.
by u(1) = 0 and u′(1) = 1 and defined as:

uβ(x) = { x1−β−11−β , β 6= 1,log(x), β = 1.
Proof. We solve the differential equation RRA(x) = −u′′(x)x

u(x) = β satis-fying the two initial conditions u(1) = 0 and u′(1) = 1. This is a Cauchyproblem. The equation can be written as follows:
[logu′(x)]′ = −β[logx]′ |∫ dxlogu′(x) = −β logx + c

u′(x) = exp(c)x−β
where c represents the constant of integration. Using the first initialcondition u′(1) = exp(c) = 1, so c = 0. Integrating the equation onceagain we obtain: u(x) = 11−βx1−β + d, where d represents another
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constant of intergration. Using the second initial condition u(1) = 11−β+
d = 0, so d = − 11−β and we get u(x) = x1−β−11−β , for β 6= 1. Finally usingthe d’Hospital rule:

lim
βÏ1 x1−β−11−β H= lim

βÏ1 −x1−β logx
−1 = logx

11. Observe that the CRRA class belongs to decreasing absolute risk aver-sion class (DARA), because if RRA(x) = β = const, then ARA(x) = β
x ,which is decreasing in x.

12. TODO: Wealth and scale invariant strategies and the correspondingVincze functional equations.
13. TODO: Pratt’s theorem of comparative risk aversion
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5 Expected Utility example applications

1. Demand for insurance example: a strictly risk-averse DM has initialwealth W . She can lose the amount D of her wealth with probability
π. She can buy insurance that costs q per unit and pays 1 per unitconditional on the loss occurring. She must decide how many unitsof insurance, α, to buy. The lottery she faces can be written as: l :=(W −αq, 1−π;W −αq −D+α, π). The expected value of this lotteryequals:

E(l) = W − αq − π(D − α).Let us state the proposition:
Proposition 3. If insurance is actuarially safe, a strictly risk averse
DM will choose to fully insure against risk.

Proof. Suppose that the DM’s preferences are represented by utilityfunction u. Her problem might be written as:
max
α

Eu(l) = (1− π)u(W − αq) + πu(W + (1− q)α−D).
Assuming interior solution α∗ > 0, it has to satisfy the FOC for thisoptimization problem:

−q(1− π)u′(W − α∗q) + π(1− q)u′(W + (1− q)α∗ −D) = 0.
Suppose that the price of insurance is actuarially fair. It means thatthe insurance company has zero profits from insurance (neither gainsnor loses); her profits are αq − πα and they are zero if q = π. Let’sassume that this is the case. Then FOC becomes:

u′(W + (1− q)α∗ −D) = u′(W − α∗q).
Since u′ is strictly decreasing (the DM is risk averse), we have:

W + (1− q)α∗ −D = W − α∗q Ñ α∗ = D.

2. Demand for risky assets example: there are two assets; a safe assetwith a return of 1 and a risky asset with a random return z, distributedaccording to F on the support [a, b] ⊆ R, such that E(z) > 1. Thedecision maker has an initial amount of wealth W , invests an amount
α in the risky asset, W − α in the safe asset. Her preferences arerepresented by a utility function u. It is assumed that she is risk aversefor all levels of wealth.

16



TPD Michał Lewandowski
Proposition 4. If a risky asset is actuarially favorable, then any risk
averse individual will always buy some of it.

Proof. The decision maker’s wealth after buying a portfolio equals
W + (z − 1)α. Her utility maximization problem can be written as:

max
α∈[0,W ]

∫ b

a
u(W + (z − 1)α)dF (z).

Let α∗ be an argument that maximizes the above expression. It has tosatisfy the following Kuhn-Tucker first-order condition:
∫ b

a
(z − 1)u′(W + (z − 1)α∗)dF (z)


< 0 if α∗ = 0,= 0 if α∗ ∈ (0,W ),
> 0 if α∗ = W.

(3)
The second order condition is:∫ b

a
(z − 1)2u′′(W + (z − 1)α∗)dF (z).

It is satisfied because (z − 1)2 ≥ 0, for any z ∈ [a, b] and the secondderivative of u is always negative due to risk aversion. We will provethe proposition by contradiction. Suppose that α∗ = 0. Note that theFOC evaluated at α∗ = 0 becomes ∫ ba (z−1)u′(W )dF (z) = u′(W )(E(z)−1), which is positive because E(z) > 1. Hence α∗ = 0 does not satisfythe FOC.

17



TPD Michał Lewandowski
6 Problems with Expected Utility

1. TODO: the Allais type paradoxes: common ratio, common conse-quence effects.
2. TODO: the list of other EU paradoxes: WTA/WTP disparity, prefer-ence reversal, coexistence of insurance and gambling, framing effects,etc.
3. EU is locally risk neutral: Barberis, Huang, Thaler (2006) made anexperiment involving three groups of people: MBA students, financialanalysts and very rich investors, and asked them whether they wouldaccept an equal chance of either winning $550 or losing $500? 71%turned down the gamble. Suppose that x is a gamble with an equalchance of either winning (1 + λ)x dollars or losing x dollars. Let u bea vNM utility function and W an initial wealth. The EU of the gambleis Eu(W + x) = 12u(W − x) + 12u(W + (1 + λ)x). Let us see what is theeffect of increasing x at x∗ = 0.

dEu(W+x)
dx

∣∣∣
x=0 = −12u′(W ) + 12 (1 + λ)u′(W )

= 12λu′(W )
It means that if λ is positive (the gamble is actuarially favorable), thenthe DM will accept the gamble for small x. This means that ExpectedUtility is locally risk neutral (Arrow, 1971). So in order to explain thatpeople reject the gamble for small x we need to introduce loss aver-sion.
Definition 1. We say that the DM exhibits loss aversion if his pref-
erences are represented by a utility function u, such that u(x) <
−u(−x), for all x.

4. Suppose that the utility function takes the following form:
u(x) = { ū(x), for x ≥ 0,

−λū(−x), for x < 0. .
where λ > 0 and ū is a strictly increasing utility function with ū(0) = 0.When λ is greater than 1 the decision maker exhibits loss aversion.

5. Rabin (2000) paradox: modest risk aversion over small stakes impliesunrealistically high risk aversion over large stakes:
18
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Proposition 5. If a EU maximizer rejects P := ($110, 12 ;−$100, 12 ) at
any initial wealth level, then she will reject Q := (∞, 12 ;−$1000, 12) at
any wealth level.

This is called a paradox since while the premise sounds reasonable,the conclusion does not. The idea is that the utility function u of a EUmaximizer with initial wealth W that rejects P must be very concaveat W . Since this is true for all W , then the whole function u must bevery concave, which means that it becomes flat very quickly.
Proof. A EU maximizer rejects lottery P at any wealth level W . Itimplies that the utility function must be concave and satisfies:

12u(W + 110) + 12u(W − 100) ≤ u(W )or equivalently: u(W + 110)− u(W ) ≤ u(W )− u(W − 100)
Note that a linear approximation of a concave function lies always onor above the function. Using this property we have:

u(W + 110) ≥ u(W ) + 110u′(W + 110)
u(W ) ≥ u(W − 100) + 100u′(W − 100)

Putting it al together we obtain:
110u′(W + 110) ≤ u(W + 110)− u(W )

≤ u(W )− u(W − 100)
≤ 100u′(W − 100)

or equivalently: u′(W + 110)
u′(W − 100) ≤ 100110 .If we do the same at wealth level W + 210 instead of W , we get:
u′(W + 320)
u′(W + 110) ≤ 100110Combining both inequalities:

u′(W + 110)
u′(W − 100) u′(W + 320)

u′(W + 110) ≤
(100110

)2
Continuing this way we get:

u′(W − 100 + 210n)
u′(W − 100) ≤

(100110
)n

For example if n = 50, then 210× 50 = 10500 and (100110)50 = 0.008.
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7 Prospect Theory

1. TODO: Original Prospect Theory
2. TODO: Problems with original Prospect Theory
3. TODO: Cumulative Prospect Theory
4. TODO: Some applications
5. TODO: Third-generation prospect theory
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8 EU theory vs. EU models

1. TODO: Consequentialism and the EU of lifetime wealth model
2. TODO: Mental accounting, gambling wealth and the EU of gamblingwealth model
3. TODO: Reference dependence and the Reference-dependent EUmodel
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9 Range-dependent utility

1. TODO: Range-dependent utility as a general model and decisionutility as its operational special case
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