Preference relation, choice rule and utility function

Preferences once more (this time strict)

- Let X represent some set of objects
- Often in economics $X \subseteq \mathrm{R}^{K}$ is a space of consumption bundles
- E.g. 3 commodities: beer, wine and whisky
- $x=\left(x_{1}, x_{2}, x_{3}\right)$ (x_{1} cans of beer, x_{2} bottles of wine, x_{3} shots of whisky
- We present the consumer pairs x and y and ask how they compare
- Answer x is better than y is written $x \succ y$ and is read x is strictly preferred to y
- For each pair x and y there are 4 possible answers:
- x is better than y, but not the reverse
- y is better than x, but not the reverse
- neither seems better to her
- x is better than y, and y is better than x

Assumptions on strict preferences

- We would like to exclude the fourth possibility right away

Assumption 1: Preferences are asymmetric. There is no pair x and y from X such that $x \succ y$ and $y \succ x$

- Possible objections:
- What if decisions are made in different time periods?
- change of tastes
- addictive behavior (1 cigarette $\succ 0$ cigarettes $\succ 20$ cigarettes changed to 20 cigarettes $\succ 1$ cigarette >0 cigarettes)
- dual-self model
- Dependence on framing
- E.g. Asian disease

Assumptions on strict preferences

Assumption 2: Preferences are negatively transitive: If $x \succ y$, then for any third element z, either $x \succ z$, or $z \succ y$, or both.

- Possible objections:
- Suppose objects in X are bundles of cans of beer and bottles of wine $x=\left(x_{1}, x_{2}\right)$
- No problem comapring $x=(21,9)$ with $y=(20,8)$
- Suppose $z=(40,2)$. Negative transitivity demands that either $(21,9) \succ(40,2)$, or $(40,2) \succ(20,8)$, or both.
- The consumer may say that comparing $(40,2)$ with either $(20,8)$ or $(21,9)$ is to hard.
- Negative transitivity rules this out.

Weak preferences and indifference induced from strict preferences

- Suppose our consumer's preferences are given by the relation \succ.

Definition: For x and y in X,

- write $x \succsim y$, read " x is weakly preferred to y ", if it is not the case that $y \succ x$.
- write $x \sim y$, read " x is indifferent to y ", if it is not the case that either $x>y$ or $y \succ x$.
- Problem with noncomparability: if the consumer is unable to compare $(40,2)$ with either $(20,8)$ or $(21,9)$, it doesn't mean she is indifferent between them.

Dependencies between rational preferences

Proposition: If \succ is asymmetric and negatively transitive, then:

- weak preference \succsim is complete and transitive
- indifference ~ is reflexive, symmetric and transitive
- Additionally, if $w \sim x, x>y$, and $y \sim z$, then $w \succ y$ and $x>z$.
The first two were proved previously. The third may be proved at home.

Needed for later purposes

Additionally, we will need the following:
Proposition: If \succ is asymmetric and negatively transitive, then \succ is irreflexive, transitive and acyclic.
Proof.

- Irreflexive by asymmetry
- Transitivity:
- Suppose that $x>y$ and $y \succ z$
- By negative transitivity and $x \succ y$, either $x \succ z$ or $z \succ y$
- Since $y \succ z$, asymmetry forbids $z \succ y$. Hence $x \succ z$
- Acyclicity:
- If $x_{1} \succ x_{2}, x_{2} \succ x_{3}, \ldots, x_{n-1} \succ x_{n}$, then transitivity implies $x_{1} \succ x_{n}$
- Asymmetry (or irreflexivity) implies $x_{1} \neq x_{n}$

Quod Erat Demonstrandum (QED)

Choice rule induced by preference relation

- How do we relate preference relation with choice behavior?

Definition: Given a preference relation \succ on a set of objects X and a nonempty subset A of X, the set of acceptable alternatives from A according to \succ is defined to be:

$$
c(A ; \succ)=\{x \in A: \text { There is no } y \in A \text { such that } y \succ x\}
$$

Several things to note:

- $c(A ; \succ)$ by definition subset of A
- $c(A ; \succ)$ may contain more than one element (anything will do)

Properties of such choice rule

- In some cases, $c(A ; \succ)$ may conatin no elements at all
- $X=[0, \infty)$ with $x \in X$ representing x dollars
- $A \subseteq X, A=\{1,2,3, \ldots\}$
- Always prefers more money to less $x \succ y$ whenever $x>y$
- Then $c(A ;>)$ will be empty
- The same when $A=[0,10)$ and money is infinitely divisible
- In the examples above, $c(A ;\rangle)$ is empty because A is too large or not nice - it may be that $c(A ; \succ)$ is empty because $>$ is badly behaved
- suppose $X=\{x, y, z, w\}$, and $x \succ y, y \succ z$, and $z \succ x$. Then $c(\{x, y, z\} ; \succ)=\emptyset$

WARP

- Weak Axiom of Revealed Preference: if x and y are both in A and B and if $x \in c(A)$ and $y \in c(B)$, then $x \in c(B)$ (and $y \in c(A)$).
- It may be decomposed into two properties:
- Sen's property α : If $x \in B \subseteq A$ and $x \in c(A)$, then $x \in c(B)$.
- If the world champion in some game is a Pakistani, then he must also be the champion of Pakistan.
- Sen's property β : If $x, y \in c(A), A \subseteq B$ and $y \in c(B)$, then $x \in c(B)$.
- If the world champion in some game is a Pakistani, then all champions (in this game) of Pakistan are also world champions.
- Observe that WARP concerns A and B such that $x, y \in A \cap B$.
- Property α specializes to the case $A \subseteq B$
- Property β specializes to the case $B \subseteq A$

Rational preferences induce rational choice rule

Proposition: Suppose that \succ is asymmetric and negatively transitive. Then:
(a) For every finite set $A, c(A ; \succ)$ is nonempty
(b) $c(A ; \succ)$ satisfies WARP

Proof.
Part I: $c(A ; \succ)$ is nonempty:

- We need to show that the set $\{x \in A: \forall y \in A, y \nsucc x\}$ is nonempty
- Suppose it was empty - then for each $x>A$ there exists a $y \in A$ such that $y>x$.
- Pick $x_{1} \in A$ (A is nonempty), and let x_{2} be x_{1} 's " y ".
- Let x_{3} be x_{2} 's " $y^{\prime \prime}$, and so on. In other words, take $x_{1}, x_{2}, x_{3} \ldots \in A$, such that $\ldots x_{n}>x_{n-1}>\ldots \succ x_{2}>x_{1}$
- Since A is finite, there must exist some m and n such that $x_{m}=x_{n}$ and $m>n$.
- But this would be a cycle. Contradiction.
- So $c(A ;>)$ is nonempty. End of part I.

Rational preferences induce rational choice rule

Part II: $\mathrm{c}(\mathrm{A} ; \succ)$ satisfies WARP:

- Suppose x and y are in $A \cap B, x \in c(A, \succ)$ and $y \in c(B, \succ)$
- Since $x \in c(A, \succ)$ and $y \in A$, we have that $y \nsucc x$.
- Since $y \in c(B, \succ)$, we have that for all $z \in B, z \nsucc y$.
- By negative transitivity of \succ, for all $z \in B$ it follows that $z \nsucc x$
- This implies $x \in c(B, \succ)$.
- Similarly for $y \in c(A,>)$. End of part II.

QED

Choice rules as a primitive

- Let us now reverse the process: We observe choice and want to deduce preferences.

Definition: A choice function on X is a function c whose domain is the set of all nonempty subsets of X, whose range is the set of all subsets of X, and that satisfies $c(A) \subseteq A$, for all $A \in X$

- Assumption: The choice function c is nonempty valued: $c(A) \neq \emptyset$, for all A
- Assumption: The choice function c satisfies Weak Axiom of Revealed Preference: If $x, y \in A \cap B$ and if $x \in c(A)$ and $y \in c(B)$, then $x \in c(B)$ and $y \in c(A)$.

Rational choice rule induces rational preferences

Proposition: If a choice function c is nonempty valued and satisfies property α and property β (and hence WARP), then there exists a preference relation \succ such that c is $c(\cdot, \succ)$

Rational choice rule induces rational preferences

 proof.- Define $>$ as follows:

$$
x \succ y \Longleftarrow x \neq y \text { and } c(\{x, y\})=\{x\}
$$

- This relation is obviously asymmetric.

Part I: \succ is negatively transitive

- Suppose that $x \nsucc y$ and $y \nsucc z$, but $x \succ z$.
- $x \succ z$ implies that $\{x\}=c(\{x, z\})$, thus $z \notin c(\{x, y, z\})$ by property α
- Since $z \in c(\{y, z\})$, this implies $y \notin c(\{x, y, z\})$ again by property α
- Since $y \in c(\{x, y\})$, implies $x \notin c(\{x, y, z\})$ again by...
- Which is not possible since c is nonempty valued. Contradiction
- Hence \succ is negatively transitive. End of part I.

Rational choice rule induces rational preferences

Part II: $\mathbf{c}(\mathbf{A}, \succ)=\mathbf{c}(\mathbf{A})$ for all sets \mathbf{A}

- Fix a set A
(a) If $x \in c(A)$, then for all $z \in A, z \nsucc x$. For if $z \succ x$, then $c(\{x, z\})=\{z\}$, contradicting property α. Thus $x \in c(A, \succ)$
(b) If $x \notin c(A)$, then let z be chosen arbitrarily from $c(A)$. We claim that $c(\{z, x\})=\{z\}$ - otherwise property β would be violated. Thus $z \succ x$ and $x \notin c(A, \succ)$.
- Combining (a) and (b), $c(A, \succ)=c(A)$ for all A. End of part II.
QED

Utility representation

Definition: Function $u: X \rightarrow \mathrm{R}$ represents rational preference relation $>$ if for all $x, y \in X$ the following holds

$$
x>y \Longleftrightarrow u(x)>u(y)
$$

- The representation is always well defined since $>$ on R satisfies negative transitivity and asymmetry.
Proposition: If u represents \succ, then for any strictly increasing function $f: \mathrm{R} \rightarrow \mathrm{R}$, the function $v(x)=f(u(x))$ represents \succ as well. Proof.

$$
\begin{aligned}
& x>y \\
& u(x)>u(y) \\
& f(u(x))>f(u(y)) \\
& v(x)>v(y)
\end{aligned}
$$

QED

Minimal element in a finite set

Lemma:

In any finite set $A \subseteq X$, there is a minimal element (similarly, there is also a maximal element).

Proof:

By induction on the size of A. If A is a singleton, then by completeness its only element is minimal. For the inductive step, let A be of cardinality $n+1$ and let $x \in A$. The set $A-\{x\}$ is of cardinality n and by the inductive assumption has a minimal element denoted by y. If $x \succsim y$, then y is minimal in A. If $y \succsim x$, then by transitivity $z \succsim x$ for all $z \in A-\{x\}$, and thus x is minimal.

Utility representation for finite sets

Claim:

If \succsim is a preference relation on a finite set X, then \succsim has a utility representation with values being natural numbers.

Proof:

We will construct a sequence of sets inductively. Let X_{1} be the subset of elements that are minimal in X. By the above lemma, X_{1} is not empty. Assume we have constructed the sets X_{1}, \ldots, X_{k}. If $X=X_{1} \cup$ $X_{2} \cup \ldots \cup X_{k}$, we are done. If not, define X_{k+1} to be the set of minimal elements in $X-X_{1}-X_{2}-\cdots-X_{k}$. By the lemma $X_{k+1} \neq \emptyset$. Because X is finite, we must be done after at most $|X|$ steps. Define $U(x)=k$ if $x \in X_{k}$. Thus, $U(x)$ is the step number at which x is "eliminated". To verify that U represents \succsim, let $a \succ b$. Then $a \notin X_{1} \cup X_{2} \cup \cdots X_{U(b)}$ and thus $U(a)>U(b)$. If $a \sim b$, then clearly $U(a)=U(b)$.

Utility representation result I

Definition: A preference relation \succ on X is continuous if for all $x, y \in X, x>y$ implies that there is an $\epsilon>0$ such that $x^{\prime}>y^{\prime}$ for any x^{\prime} and y^{\prime} such that $d\left(x, x^{\prime}\right)<\epsilon$ and $d\left(y, y^{\prime}\right)<\epsilon$.

Proposition: Assume that X is a convex subset of R^{n}. If \succ is a continuous preference relation on X, then \succ has a continuous utility representation.

Utility representation result II

Monotonicity:

The relation \succsim satisfies monotonicity at the bundle y if for all $x \in X$, if $x_{k} \geq y_{k}$ for all k, then $x \succsim y$, and if $x_{k}>y_{k}$ for all k, then $x \succ y$.

The relation \succsim satisfies monotonicity if it satisfies monotonicity at every $y \in X$.

Proposition: Any preference relation satisfying monotonicity and continuity can be represented by a utility function

Proof

- Take any bundle $x \in \mathrm{R}_{+}^{n}$.
- It is at least as good as the bundle $0=(0, \ldots, 0)$
- On the other hand $M=\left(\max _{k}\left\{x_{k}\right\}, \ldots, \max _{k}\left\{x_{k}\right\}\right)$ is at least as good as x
- Both 0 and M are on the main diagonal
- By continuity there is a bundle on the main diagonal that is indifferent to x
- By monotonicity this bundle is unique, denote it by $(t(x), \ldots, t(x))$.
- Let $u(x)=t(x)$. We show that u represents the preferences:
- By transitivity, $x \succsim y \Longleftrightarrow(t(x), \ldots, t(x)) \succsim(t(y), \ldots, t(y))$
- By monotonicity this is true if and only if $t(x) \geqslant t(y)$

