Preference relation, choice rule and utility function

Preferences once more (this time strict)

- Let *X* represent some set of objects
- ▶ Often in economics $X \subseteq \mathbb{R}^{K}$ is a space of consumption bundles
 - E.g. 3 commodities: beer, wine and whisky
 - ► $x = (x_1, x_2, x_3)$ (x_1 cans of beer, x_2 bottles of wine, x_3 shots of whisky
- We present the consumer pairs *x* and *y* and ask how they compare
- Answer x is better than y is written x > y and is read x is strictly preferred to y
- ▶ For each pair *x* and *y* there are 4 possible answers:
 - *x* is better than *y*, but not the reverse
 - ▶ *y* is better than *x*, but not the reverse
 - neither seems better to her
 - ► *x* is better than *y*, and *y* is better than *x*

Assumptions on strict preferences

We would like to exclude the fourth possibility right away

Assumption 1: Preferences are **asymmetric**. There is no pair x and y from X such that $x \succ y$ and $y \succ x$

- Possible objections:
 - What if decisions are made in different time periods?
 - change of tastes
 - addictive behavior (1 cigarette > 0 cigarettes > 20 cigarettes changed to 20 cigarettes > 1 cigarette > 0 cigarettes)
 - dual-self model
 - Dependence on framing
 - E.g. Asian disease

Assumptions on strict preferences

Assumption 2: Preferences are **negatively transitive**: If x > y, then for any third element *z*, either x > z, or z > y, or both.

- Possible objections:
 - Suppose objects in X are bundles of cans of beer and bottles of wine x = (x₁, x₂)
 - No problem comapring x = (21, 9) with y = (20, 8)
 - Suppose z = (40, 2). Negative transitivity demands that either (21, 9) > (40, 2), or (40, 2) > (20, 8), or both.
 - ► The consumer may say that comparing (40, 2) with either (20, 8) or (21, 9) is to hard.
 - Negative transitivity rules this out.

Weak preferences and indifference induced from strict preferences

Suppose our consumer's preferences are given by the relation ≻.

Definition: For x and y in X,

- write x ≿ y, read "x is weakly preferred to y", if it is not the case that y > x.
- write x ~ y, read "x is indifferent to y", if it is not the case that either x ≻ y or y ≻ x.
- Problem with noncomparability: if the consumer is unable to compare (40, 2) with either (20, 8) or (21, 9), it doesn't mean she is indifferent between them.

Dependencies between rational preferences

Proposition: If \succ is asymmetric and negatively transitive, then:

- weak preference \succeq is complete and transitive
- ▶ indifference ~ is **reflexive**, **symmetric** and **transitive**
- Additionally, if $w \sim x, x \succ y$, and $y \sim z$, then $w \succ y$ and $x \succ z$.

The first two were proved previously. The third may be proved at home.

Needed for later purposes

Additionally, we will need the following:

Proposition: If \succ is asymmetric and negatively transitive, then \succ is irreflexive, transitive and acyclic. **Proof.**

- Irreflexive by asymmetry
- Transitivity:
 - Suppose that $x \succ y$ and $y \succ z$
 - By negative transitivity and $x \succ y$, either $x \succ z$ or $z \succ y$
 - Since y > z, asymmetry forbids z > y. Hence x > z
- Acyclicity:
 - If $x_1 > x_2$, $x_2 > x_3$, ..., $x_{n-1} > x_n$, then transitivity implies $x_1 > x_n$
 - Asymmetry (or irreflexivity) implies $x_1 \neq x_n$

Quod Erat Demonstrandum (QED)

Choice rule induced by preference relation

How do we relate preference relation with choice behavior?

Definition: Given a preference relation \succ on a set of objects X and a nonempty subset A of X, the **set of acceptable alternatives** from A according to \succ is defined to be:

 $c(A; \succ) = \{x \in A : \text{There is no } y \in A \text{ such that } y \succ x\}$

Several things to note:

- $c(A; \succ)$ by definition subset of A
- c(A; ≻) may contain more than one element (anything will do)

Properties of such choice rule

▶ In some cases, $c(A; \succ)$ may conatin no elements at all

- $X = [0, \infty)$ with $x \in X$ representing x dollars
- $A \subseteq X, A = \{1, 2, 3, ...\}$
- Always prefers more money to less x > y whenever x > y
- Then $c(A; \succ)$ will be empty
- ► The same when *A* = [0, 10) and money is infinitely divisible
- In the examples above, c(A; ≻) is empty because A is too large or not nice it may be that c(A; ≻) is empty because ≻ is badly behaved
 - ▶ suppose $X = \{x, y, z, w\}$, and $x \succ y, y \succ z$, and $z \succ x$. Then $c(\{x, y, z\}; \succ) = \emptyset$

WARP

- ▶ Weak Axiom of Revealed Preference: if *x* and *y* are both in *A* and *B* and if $x \in c(A)$ and $y \in c(B)$, then $x \in c(B)$ (and $y \in c(A)$).
- It may be decomposed into two properties:
 - Sen's property α : If $x \in B \subseteq A$ and $x \in c(A)$, then $x \in c(B)$.
 - If the world champion in some game is a Pakistani, then he must also be the champion of Pakistan.
 - ► Sen's property β : If $x, y \in c(A)$, $A \subseteq B$ and $y \in c(B)$, then $x \in c(B)$.
 - If the world champion in some game is a Pakistani, then all champions (in this game) of Pakistan are also world champions.
- Observe that WARP concerns A and B such that $x, y \in A \cap B$.
 - Property α specializes to the case $A \subseteq B$
 - Property β specializes to the case $B \subseteq A$

Rational preferences induce rational choice rule

Proposition: Suppose that \succ is asymmetric and negatively transitive. Then:

- (a) For every finite set A, $c(A; \succ)$ is nonempty
- (b) $c(A; \succ)$ satisfies WARP

Proof.

Part I: $c(A; \succ)$ is nonempty:

- We need to show that the set {x ∈ A : ∀y ∈ A, y ≯ x} is nonempty
- Suppose it was empty then for each x ≻ A there exists a y ∈ A such that y ≻ x.
- Pick $x_1 \in A$ (A is nonempty), and let x_2 be x_1 's "y".
- ► Let x_3 be x_2 's "y", and so on. In other words, take $x_1, x_2, x_3... \in A$, such that $...x_n > x_{n-1} > ... > x_2 > x_1$
- Since *A* is finite, there must exist some *m* and *n* such that $x_m = x_n$ and m > n.
- But this would be a cycle. Contradiction.
- So $c(A; \succ)$ is nonempty. End of part I.

Rational preferences induce rational choice rule

Part II: c(A; >) satisfies WARP:

- Suppose x and y are in $A \cap B$, $x \in c(A, \succ)$ and $y \in c(B, \succ)$
- Since $x \in c(A, \succ)$ and $y \in A$, we have that $y \not\succ x$.
- Since $y \in c(B, \succ)$, we have that for all $z \in B$, $z \not\succ y$.
- ▶ By negative transitivity of \succ , for all $z \in B$ it follows that $z \not\succ x$
- This implies $x \in c(B, \succ)$.
- Similarly for $y \in c(A, \succ)$. End of part II.

QED

Choice rules as a primitive

Let us now reverse the process: We observe choice and want to deduce preferences.

Definition: A choice function on X is a function c whose domain is the set of all nonempty subsets of X, whose range is the set of all subsets of X, and that satisfies $c(A) \subseteq A$, for all $A \in X$

- ► Assumption: The choice function c is nonempty valued: c(A) ≠ Ø, for all A
- ▶ Assumption: The choice function c satisfies Weak Axiom of Revealed Preference: If $x, y \in A \cap B$ and if $x \in c(A)$ and $y \in c(B)$, then $x \in c(B)$ and $y \in c(A)$.

Rational choice rule induces rational preferences

Proposition: If a choice function *c* is nonempty valued and satisfies property α and property β (and hence WARP), then there exists a preference relation \succ such that *c* is $c(\cdot, \succ)$

Rational choice rule induces rational preferences *Proof.*

• Define \succ as follows:

$$x \succ y \iff x \neq y \text{ and } c(\{x, y\}) = \{x\}$$

This relation is obviously asymmetric.

Part I: \succ is negatively transitive

- Suppose that $x \not\succ y$ and $y \not\succ z$, but $x \succ z$.
- ► $x \succ z$ implies that $\{x\} = c(\{x, z\})$, thus $z \notin c(\{x, y, z\})$ by property α
- ► Since $z \in c(\{y, z\})$, this implies $y \notin c(\{x, y, z\})$ again by property α
- ► Since $y \in c(\{x, y\})$, implies $x \notin c(\{x, y, z\})$ again by...
- Which is not possible since c is nonempty valued. Contradiction
- Hence \succ is negatively transitive. End of part I.

Rational choice rule induces rational preferences

Part II: $c(A, \succ) = c(A)$ for all sets A

- Fix a set A
 - (a) If $x \in c(A)$, then for all $z \in A$, $z \not\succ x$. For if $z \succ x$, then $c(\{x, z\}) = \{z\}$, contradicting property α . Thus $x \in c(A, \succ)$
 - (b) If $x \notin c(A)$, then let *z* be chosen arbitrarily from c(A). We claim that $c(\{z, x\}) = \{z\}$ otherwise property β would be violated. Thus $z \succ x$ and $x \notin c(A, \succ)$.
 - Combining (a) and (b), c(A, ≻) = c(A) for all A. End of part II.

QED

Utility representation

Definition: Function $u : X \to \mathbb{R}$ represents rational preference relation \succ if for all $x, y \in X$ the following holds

$$x \succ y \iff u(x) > u(y)$$

The representation is always well defined since > on R satisfies negative transitivity and asymmetry.

Proposition: If *u* represents >, then for any strictly increasing function $f : \mathbb{R} \to \mathbb{R}$, the function v(x) = f(u(x)) represents > as well. **Proof.**

 $x \succ y$ u(x) > u(y) f(u(x)) > f(u(y))v(x) > v(y)

Minimal element in a finite set

Lemma:

In any finite set $A \subseteq X$, there is a minimal element (similarly, there is also a maximal element).

Proof:

By induction on the size of A. If A is a singleton, then by completeness its only element is minimal. For the inductive step, let A be of cardinality n+1 and let $x \in A$. The set $A-\{x\}$ is of cardinality n and by the inductive assumption has a minimal element denoted by y. If $x \succeq y$, then y is minimal in A. If $y \succeq x$, then by transitivity $z \succeq x$ for all $z \in A-\{x\}$, and thus x is minimal.

Utility representation for finite sets

Claim:

If \succeq is a preference relation on a finite set X, then \succeq has a utility representation with values being natural numbers.

Proof:

We will construct a sequence of sets inductively. Let X_1 be the subset of elements that are minimal in X. By the above lemma, X_1 is not empty. Assume we have constructed the sets X_1, \ldots, X_k . If $X = X_1 \cup$ $X_2 \cup \ldots \cup X_k$, we are done. If not, define X_{k+1} to be the set of minimal elements in $X - X_1 - X_2 - \cdots - X_k$. By the lemma $X_{k+1} \neq \emptyset$. Because X is finite, we must be done after at most |X| steps. Define U(x) = k if $x \in X_k$. Thus, U(x) is the step number at which x is "eliminated". To verify that U represents \succeq , let $a \succ b$. Then $a \notin X_1 \cup X_2 \cup \cdots X_{U(b)}$ and thus U(a) > U(b). If $a \sim b$, then clearly U(a) = U(b). **Definition:** A preference relation \succ on X is continuous if for all $x, y \in X, x \succ y$ implies that there is an $\epsilon > 0$ such that $x' \succ y'$ for any x' and y' such that $d(x, x') < \epsilon$ and $d(y, y') < \epsilon$.

Proposition: Assume that X is a convex subset of \mathbb{R}^n . If > is a continuous preference relation on X, then > has a continuous utility representation.

Utility representation result II Monotonicity:

The relation \succeq satisfies monotonicity at the bundle y if for all $x \in X$, if $x_k \ge y_k$ for all k, then $x \succeq y$, and if $x_k > y_k$ for all k, then $x \succ y$.

The relation \succeq satisfies monotonicity if it satisfies monotonicity at every $y \in X$.

Proposition: Any preference relation satisfying monotonicity and continuity can be represented by a utility function

Proof

- Take any bundle $x \in \mathbb{R}^n_+$.
- It is at least as good as the bundle 0 = (0, ..., 0)
- ► On the other hand M = (max_k {x_k}, ..., max_k {x_k}) is at least as good as x
- Both 0 and M are on the main diagonal
- By continuity there is a bundle on the main diagonal that is indifferent to x
- ► By monotonicity this bundle is unique, denote it by (t(x), ..., t(x)).
- Let u(x) = t(x). We show that u represents the preferences:
- ► By transitivity, $x \succeq y \iff (t(x), ..., t(x)) \succeq (t(y), ..., t(y))$
- ► By monotonicity this is true if and only if t(x) ≥ t(y)
 OED