Mark Machina (UCSD) - our "publicity director” who asked
about monotonicity and invented the triangle
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Drazen Prelec (MIT) who likes Mitosz poetry and who
discovered the most famous shape of the probability weighting
function




Monotonicity and continuity

Definition
The CE functional is monotonic wrt FOSD if whenever
X >FOSD Y, CE(X) > CE(y).

Definition

The CE functional is continuous if for every sequence of
lottery payoffs {x,}, where n € N and each x,, is distributed
according to F,, converging in distribution to the lottery
payoff y distributed according to G, the following holds:
lim CE(x,) = CE(y).
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Monotonicity and continuity in the decision utility model

Define: C(n)
RRAp(n) =

— D(1 —m), n €[0,1]. And then also
) =

_mp ()> RRA¢(n) = &, n € [0,1]

Theorem (Monotonicity and Continuity)

1) The CE functional is monotonic wrt FOSD if and
only if RRAp and RRA ¢ are non-decreasing.

2) The CE functional is continuous if and only if D is
linear.

a) Continuity wrt. upper range increase holds if and only
if RRAp is constant (power function).

b) Continuity wrt. lower range increase holds if and only
if RRA¢ is constant (inverse power function,).
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Indifference lines for the decision utility satisfying

monotonicity

P1
1@best prize x;

P3
medium prize x» worst prize x3
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Example 1: The CDF of the Beta distribution

D(x) = A/ t9 N1 — t)P1de,
0

where x € [0,1], A ,and a,f > 0.

Monotonicity conditions are satisfied in four special cases:
a) linear: D(x) =x, a =B =1,
b) concave inverse power: D(x) =1 —(1-x);,>1, a =1,
c) convex power: D(x) = x*,a >1,B=1,
d) all S-shaped functions in this family, «, 8 > 1.
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Example 2: The CDF of the Two-Sided Power Distribution

Dix) = Xo<4>a, 0< x < x,

where xp € (0,1), a > 0.

Monotonicity conditions are satisfied in four special cases:
a) linear: D(x) = x, a = 1,
b) concave inverse power: D(x) =1 — (1 — x)%, a > 1,
x0 =0,
¢) convex power: D(x) = x%, a > 1,xg = 1,
d) all S-shaped functions in this class, a > 1, xg € (0, 1).

All inverse S-shaped functions in both classes are excluded.
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Indifference lines for TSPD decision utilities

TSPD DU, a=2

Power DU, a =05

TSPD DU, a =05

02 04 05 08 10

02 04 06 08 10
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Monotonicity and continuity for S-shaped functions

From now on let CE(x?), CE(x") denote the limits as € — 0.

1

x?=(0,€10,% - €20,%)
y = (10,220,
x! = (10, 3;20, % - €30,¢€)

20 30
CE(x?) <CE(y)< CE(x")

» Continuity is generally violated in the decision utility
model
» Monotonicity is typically satisfied for S-shaped fcns

» Monotonicity is al iolated for i S- d
" r?:o onicity is always violated for inverse sgnualgﬁn rLab



Monotonicity and continuity for the limiting functions

] limiting functions \ D(x) \ CE(x9) \ CEly) \ CE(x4) \
convex power x? 15.81 | 17.07 | 17.07
concave power VX 1457 | 12.5 12.5

convex inverse power | 1 — V1 —x 17.5 17.5 15.43
concave inverse power | 1 — (1 —x)? | 12.93 | 12.93 | 14.81

» Power is continuous wrt upward range changes

» Inverse power is continuous wrt downward range
changes

» Concave power and convex inverse power violate
monotonicity

» Convex power and concave inverse power satisfy
monotonicity
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EU Paradoxes

Coexistence of gambling and insurance:

(J—pJ,ps—pd, 1 —p) > (0,1),
(H,1 - p;0,p) < (H — pH, 1).

This pattern of preferences is predicted by the decision
utility model if the following conditions are satisfied:

p > max(D(p), 1 — D(1 - p))
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D
1 20 — D(1-p)
eql-p
!
!
|
|
|
|
1
|
ph-- |
|
D(p) == LT
0 p 1-p 1

Figure: gambling — no gambling and insurance — no insurance
comparison.

» binary lotteries: DU is observationally equivalent to DT

» However psychologically very different, based on an
S-shaped utility function and hence much closer to
Markowitz (1952) SummerLab



Harry Markowitz (La Jolla) who is more proud of his von
Neumann prize for his work on utility rather than his Nobel
prize for his work on optimal portfolio




Russian roulette

Two situations:
1. A six-shooter with 4 loaded chambers. How much would
you pay to remove one bullet?
2. A six-shooter with 2 loaded chambers. How much would
you pay to remove two bullets?
Expected Utility Theory predicts that the two prices should
be the same (Assumption: if you die you don't care)

%u(death) + %u(w) = %u(death) + gu(w - P)
%u(death) + %u(w) = ulw - Q)

Assuming that u(death) = 0 and u(w) = 1, we get:
uw—-P)=2B83=uw-Q) = P=Q
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Russian roulette

Let's see how it is with the Decision Utility model:

1 1
death + (w — death)D™ <§> = death + (w — P — death)D™* <§>
1 (2
death + (w — death)D 3) = w- Q
Hence we get the following conditions:
D'(})  w-—P —death
D-1(l)y ~  w—death
D! (%) oW - Q — death
D-1(1) w — death
Finally we get:
D(3) Di(3)
>P 3/ < 3
’ o) < DI()
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Russian roulette

D(r)

wIiN

N[=

W=

D7 (3) b7 (3) D (3)
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The Allais paradox and the Common Ratio effect

Lety >x>0,1>p>qg>0,12 P
egy $4000 x = $3 000, q—02 p = 0.25.

()

a Py
Allais x < > <
-q -p
0
<p

(B) () 9y
CR < X <
-q
U: (A),(B) equivalent and cannot coexist with ().

U: (A),(B) equivalent and can coexist with (x).
Rank (A),(B) not equivalent and can coexist with (x).
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The Allais paradox and the Common Ratio effect

()

(W+x) (W +x)
. u(W+x q u(W+x o e
EU: <3< dWiy) contradiction

()

—_—
DU: D! (%) <x< gjgzg ... satisfied when D is flat in the

|

(A),(B)
upper and steep in the middle part of its domain.

o owle
Rank: W@+ 1-w(l—pra] ~

(B) SummerLab



Predictive accuracy

For binary lotteries, range dependence equivalent to rank
dependence.

How about more than two outcome lotteries? Convenient to
check in the MM triangle:

Harless (1992) finds that systematic violations of expected
utility disappear when lotteries are nudged inside the
triangle. Similar evidence: Conlisk (1989), Sopher, Gigliotti
(1993), Harless, Camerer (1994), Cohen (1992), Hey, Orme
(1994).
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Nudging the lotteries inside the MM triangle: Allais

P1
1 K\best prize x;

K p3
R worst prize x3

. . o]
medium prize X2P
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Nudging the lotteries inside the MM triangle: common ratio

P1
1 K\best prize x;

P3
R worst prize x3

medium prize XQI_;
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Predictive accuracy: comparison with CPT

Kontek (2018) nonparametrically fits indifference curves in
the MM triangle.

His choice of the grid is novel — more dense on the edges:
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Predictive accuracy: comparison with CPT

What he gets is the following fit:

fm
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Theoretical predictions of CPT and DUT

CPT predicts smooth
nonlinear curves with fanning
out.

DUT predicts straight parallel
lines discontinuous at the legs.

.

10
08 -
/ CPT
06 H
3 -, [
04
04
02f:
02
: / 00 -
ool 00 0.2 04 06 08 1
00 0z 04 o5 08 )
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Which is the better match?

CPT against the data DUT against the data

X1=0 7}, x2=450 2}, x3=900 z} x1=0 7}, x2=450 2}, x3=900 zt
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Comparing CPT and DUT - numerical results

The result of fitting 134 aggregated (20% trimmed mean) CE
values for a group of 237 subjects (undergraduate students):

TaBLE 1: Estimation results of several decision-making models under risk.

Parameters

Model  SSE AIC  BIC Est. value St error p-value

EV 547929 1190.1 1195.9

EUT 54631.6 1189.7 11955 =099 002 <1071

ST  46427.1 11699 1178.6 §=091 0.02 <107
6=20904 43400  0.63

CPT 321180 11225 11341 a=1.12 005 <1074

y=109 004 <107

§=086 001 <107

TAX 30183.1 11142 11258 a=1.05 002 <107

y=095 002 <1077

§=012 002 <107

PRT 24860.8 1086.2 10949 « =096 001 <107!*

B=091 001 <107'%

DUT 20003.7 1057.1 10658 ry=040 0.02 <1077

§=124 002 <107'®
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Manel Baucells (Darden, U Virginia) who accepted our paper

in Management Science and started collaborating with
Krzysztof and me on extending the model.

Cap sa Sal, Costa Brava Sopot, Zatoka Gdanska
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(Exponentially) Discounted Utility Theory

The main model for risk is Expected Utility. The main
model for intertemporal decisions is Discounted Utility
theory.

9 ={0,1,..., T} the time index set.
(¢, ¢ts1, ..., €T), Also denoted by (¢, c_;), consumption streams
>~ the preference relation over such streams

Utility that represents =, is the following:

DU¢(ct, c1, ... 1) = ulcy) E S"tule,),

n=t+1

where 6 € (0,1), u is a strictly increasing instantaneous utility
function satisfying u(0) = 0.
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Discounted utility theory - main properties

Impatience (dislikes the delay of gains)

v

v

Stationarity (preferences are invariant to adding
common delays in time): for any ¢, c’, t, t’, A

[c,t] =0 [c,t] & [c,t+A]l o[, t' + A]

, where [c, t] denotes a consumption stream where
¢cs=0fors#+tand ¢s = c for s = t.
Separability:
» Current separability: for all ¢, ¢j, c_o,c ot
(o, c-0) o (co,c_g) = (chrc-0) o (chsclo) -
» Forward separability: for all ¢, ¢j, c_g, ¢ g

! 4

(co,c_0) 7o (€, c0) &= (co,Cg) Zo (b, g)-

v

» Dynamic consistency: for all ¢, ¢;, c_;, ¢’
’ !
(cerct) Zt (e cy) &= co¢ a1 ¢y
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Discounted Utility Theory paradoxes

Evidence against:

» Stationarity: preference reversal due to desire for
immediate gratification, e.g.:

[100, 0] o [105, 1] and [100, 12] == [105, 13]

» Separability: Loewenstein, Prelec (1993), 5 weekends, H
eat at home, F fancy French, L fancy Lobster:

Group [: option A: F,H,H,H,H [11%]
vs. option B: H,H,F,H,H [89%]
Group II: option C: F,H,H,H, L [49%)]
vs. option D: H,H,F,H,L [51%)]

» Dynamic consistency: Self control problems, e.g. I will
exercise tomorrow
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Hyperbolic or quasi-hyperbolic discounting

Behavioral model for choice over time is quasi-hyperbolic
discounting (or beta-delta model):

-
BDU:(ct, c1, ..., c7) = ulce) + B < Z 6n_tu(cn)> ,

n=t+1

Quasihyperbolic approximates a non-tractable hyperbolic

case:
| discounting/period [0 1 | 2 [.-- | T |
exponential 1 S §2 ... ST
hyperbolic V) o | o5 | | o5
quasi-hyperbolic 1| BS | B&° | -+ | B&T

The BD model explains nonstationarity and dynamic
inconsistency but fails to explain non-separabilities.
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Paradoxes for risk and time

Choice objects: (x, p, t), where x is money, p probability, t

time delay
Table 1 Choices Between Prospects A and B

Prospect A vs. Prospect B Response N
1. (€9, for sure, now) VS. (€12, with 80%, now) 58% vs. 42% 142
2. (€9, with 10%, now) VS. (€12, with 8%, now) 22% vs. 18% 65
3. (€9, for sure, 3 months) VS, (€12, with 80%, 3 months) 43% vs. 57% 221
4. (100, for sure, now) VS, (F110, for sure, 4 weeks) 82% vs. 18% 60
5. (100, for sure, 26 weeks) VS. (f110, for sure, 30 weeks) 37% vs. 63% 60
6. (f100, with 50%, now) vs. (110, with 50%, 4 weeks) 39% vs. 61% 100
7. (€100, for sure, 1 month) Vs. (€100, with 90%, now) 81% vs. 19% 79
8. (€5, for sure, 1 month) VS. (€5, with 90%, now) 43% vs. 57% 79

Sources. Rows 1-3, Baucells and Heukamp (2010, Table 1); rows 4-6, Keren and Roelofsma (1995, Table 1) (f1in 1995 equaled
$0.6); rows 7 and 8, Baucells et al. (2009).

Pattern 1-2: the common ratio effect

Pattern 4-5: the common difference effect

Pattern 1-3: the common ratio using delay

Pattern 4-6: the common difference using probability
Pattern 7-8: subendurance

v

vV vVvYyyewy

SummerLab



Probability and time trade-off, Baucells, Heukamp (2012)

They consider preferences over triplets (x, p, t), which
describe a prospect of receiving $x with probability p in time
t, otherwise nothing.

Their idea is to see time as intrinsically uncertain: delaying
the receipt of a prize is equivalent to increasing uncertainty
of getting it.

They postulate the following axiom which is key in their
model:

(x,p,t +A) ~ (x,0p, t) = (x,q,s +A) ~(x,q90,s),

for all (x,p, t),(x,q,s),A > 0,0 (0,1).
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Motivation for Range Utility Theory for risk and time

The normative (rational) theory for risk and time is
Discounted Expected Utility, U = E[exp(—pt)u(X¢)]

We have good descriptive (behavioral) theories, but ONLY
for
» Gambles that resolve today, e.g. prospect theory

» Streams of positive outcomes under certainty, e.g.
hyperbolic discounting

Most problems involve both risk AND time:
» Investment decisions
» Options
» Incentive contracts
» Annuities
Search

v
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Motivation for Range Utility Theory for risk and time

We dont even have a behavioral model combining loss
aversion and hyperbolic discounting.

Our GOAL is to propose a general descriptive choice model
for uncertain cash-flows.

Uncertain cash flows is a very general domain, and
contains the important subdomains of:

» lotteries played today,

» lotteries played in the future,

» a schedule of payments under certainty,

» and a sequence of lotteries played over time, with or
without serial correlation.
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Motivation for Range Utility Theory for risk and time

We build on the notions of Kontek, Lewandowski (2018) and
Baucells, Heukamp (2012)

KL 2018 replace rank principles for range principles.

We modify their model on three accounts:
» we introduce context dependence,
» we add reference-dependence with loss aversion.
» we relax shift and scale invariance.
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» A context G is a set of lotteries.
» It induces a range [L, G]
where L the worst and G the best outcome in G.

Each lottery P may be evaluated:

» context-free — the range is then (—oo, +00) — according to
the grand range utility v
» or context-dependent — according to u,g)

vy

» For each range, the latter is obtained as follows:
_ v(x) — v(L)
u,g(x) = D <v(G) — v(L)>' x € [L, G]. (3)
range
effects

Parducci
range principle

where D :[0,1] — [0, 1] is continuous and strictly
increasing with D(0) = 0, D(1) = 1.
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Extending the basic model

Difference to KL2018:
» The context induces the range not the lottery

» Shift and scale invariance implies:

- L
uiL,c)(x) = D <2 — L> , for xc[L,G].
We relax it to get:
vix) — v(L
U[L,G](X) =D <ﬁ> B for XE[L,G]

where v : X — R is reference-dependent with loss
aversion.
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Figure: The value function v(x) (top) is locally distorted by range

v(x)—v(L) )

effects (bottom), yielding uj; ¢)(x) = D (m .

~100-75 25 | “gains 100
X
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Motivation for Range Utility Theory for risk and time

BH 2012 treat time as intrinsically uncertain. They introduce
probability and time-tradeoff to explain risk and time
paradoxes all together.

We generalize their model from single delayed payment to
uncertain cash-flows.
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An uncertain cash flow with given probabilities is replaced
by a two stage act.

» First stage: a“horse race” is run determining the period
in which the subjective termination event occurs — all
the cash-flow payoffs after this period become foregone.

» Second stage: a “roulette wheel" is spun which
determines the cumulative cash-flow for each
termination period.
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An uncertain cash flow The associated act
! —100
+20 = —100 + 120
t=0 t= t= —-60 = —100 + 40
0.5 » 4200

0.5.++120 0.25:+220 = —100 + 120 + 200
100 < o i;go 25,1120 = —100 + 120 + 100
400" +10 = —100 + 40 + 70
+30 —-30= —100+ 40+ 30
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Structural assumption

Assumption

The decision maker is indifferent between any two cash
flows that induce the same act.

SummerLab



Two different cash-flows induce the same act. Let P(w;) = 0.125

cash-flow 1 cash-flow 2

\ o 1 2 0 1 2

wiy Uwy | =100 120 200 wp | =100 120 -10
w3Uwg | —100 120 100 wy | =100 40 70
wsUwg | —100 40 70 w3 | =100 120 -50
w7Uwg | =100 40 30 wg | —100 40 30
ws | =100 120 100

we | —100 40 180

w7 | =100 120 200

wg | —100 40 280

the AA act

0 1 2

-100 | 1 0 0

—-60 | 0 0.5 0

=30 1|0 0 0.25

100 0 0.25

201 0 0.5 0

120 | O 0 0.25
220 | 0 0 0.25 SummerLab



Range and rank principles agree for binary gambles

According to (3), the CE of a lottery (L, G;1 — p,p), L< G, is
given by

v(CE) — v(L)
D <V(G)—v()> = (1 - p)D(0) + pD(1) = p.
We apply D! to both sides and isolate v(CE) to obtain
v(CE) = DM p)v(G) + (1 = DM p))v(L). (4)

Thus, for the case of eliciting CEs of binary lotteries, our
model is preferentially equivalent to rank dependent utility.

For three or more outcomes, or binary lotteries contained
on a larger context, the models diverge.
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Preference reversal

Let (0,120;0.9,0.1) be the $-bet and (0, 20;0.2,0.8) the p-bet.

Set v(0) = 0. When CEs are elicited each lottery is
considered separately, each with its own range. The
observed CEg > CE, implies v(120)D~1(0.1) > v(20)D~1(0.8).

When the two lotteries are compared side by side, the $-bet
dictates the range. The observed preference for the $-bet
implies 0.8D (v(20)/v(120)) > 0.1.

The two conditions together:

p-1 <o.1> v(20) - g:l(o 1)

0.8 v(120) 1(0:8)'

which is easy to meet if D is s-shaped.
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Axioms

We now state the axioms we impose on =gC 62, G ¢ C.
A1 Weak order: Each 7@ is complete and transitive.

A2 Continuity: If a,b,c € G and a >g b >g ¢ then
aa+ (1 —a)c >g b>gBa+(1—-PB)cfor some a,pB € (0,1).
A3 Independence: If a,b,c € G and a >g b, then
aa+ (1 —a)c g ab+ (1 —a)c forall a € (0,1].
A4 Consequence Monotonicity: If 6,,6, € G and x > y,
then 6, >g 6,.
A5 Range dependence: If r(B) = r(B') and a, b€ BN &,
then
a —@ b if and only if a Zg b.
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Axioms

Let —* denote the preference relation on the grand context
G* and, abusing notation a little, a; denote the constant act
that offers lottery a; in each state.

A6 Range-principle for risk: Any three of the following
indifferences imply the fourth one:

6x ~ pSg + (1 = p)é. Sx ~* p'Sc + (1 -p 6L
Oy ~ poG + (1 — p)5L' Oy ~* p,5G/ + (1 — p,)éL/.

A7 Symmetry: If 36, + 36, ~ 38, + 166 then
16+ 16, ~* 36, + 366,

A8 Essentiality: For every range [L, G| and t € J there exist
a, b € G([L, G]) such that a; = b; for all / + t and
a >'G([L,G}) b.

A9 State Monotonicity: If a; 7—g b; for all t € ¥, then a g b.
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Representation for uncertain cash-flows

Theorem
If preferences (7-g)s, 6 € C satisfy A1-A9 if and only if
there exist:

a) a strictly increasing continuous and cardinally unique
function v : X — R,

b) a unique strictly increasing, continuous and surjective
function D :[0,1] — [0, 1], such that D(x) = 1 — D(1 — x),
for x €0,1

¢) for every range [L, G], a unique probability measure
M6 29— [0,1] with py 6i(t) > 0 for each t € 9,

such that for any context G € C inducing the range [L, G],
the preference g is represented by Ug : G — R, as given by

Uols) =S v(x) = viL)
6la) =Y pra(t)) | alx)D ORIk VacB. (5)
t=0 xeX
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Representation for risk

Theorem

If preferences (~g)s over constant acts, G € C®°", satisfy
axioms A1-A7 if and only if there exist functions v and D
as in Theorem 4

such that for any context @ ¢ C*°"! inducing the range
[L, G], the function Ug : G — R that represents g is given
by

Ug(P) = X):(P(X)D <%> , VP € 6. 6)
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Subjective survival

Given the subjective probabilities of the termination events
L6l : I — [0, 1] we define the subjective survival function,
Si1,61: 9 —[0,1] as follows:

.
Sia(t) =Y nwali), Ve e 9,

i=t

interpreted as the subjective probability of the terminating at
or after t. Setting Sj,6(T + 1) = 0, and rewriting (5):

-
Us(a) = Z [S[L,G](t) - S[L,G](t + 1)] Z ar(x)D <V(X)—V(L))> )

t=0 xeX
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Representation for cash-flows

Our preferences over acts can now be recasted as
preferences over cash-flows.

T t g
o v(} 2o Xi) — v(L)
wm—%ﬁmﬂ Swellt+1)] ) Plw) <(®—M)>'

weR

To single out the role of discounting, we can equivalently write:
<Zwm—m»_0v@$m—M).
(G) —v(L) v(G) - v(L)
8)
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Special cases

If D(x) = x and Sy,¢)(t) = S(t), then (8) becomes

t t—-1
=ZS )Y Plw) V(qu)—v(qu)}. (©)
i=0 i=0

weR
For delayed lotteries, it particularizes into discounted
expected utility,
UX) = S(t) Y Plw

weR

For cash flows under certainty, the model agrees with Bell
(1974) model,

T t t—1
)= st szx,-) : v<§3x,->] |

t=0 i=0 i=0
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Special cases

Alternatively, if v can be taken as linear (e.g., gains only, or
losses only, with minor income effects), then we obtain the
traditional expected discounted cash-flow model, possibly
with hyperbolic discounting, given by

.
Us(X) = S(1) Y Plw)k. (10)
t=0

wWeR
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Special cases

The CE of an uncertain CF with range [L, G] solves:
D (L())) = Ug(X). Let w(x) = D1(x). Then we can

v(G)—
rewrite:
v(CE) = w(m)v(G) + (1 — w(m))v(L), where (11)
V(Yo %) — v(L) v(Y3isg %) — vil)
" ZS“G] )2 Pe) o (i) o < 6) il >l
(12)
For a lottery that resolves at time t, we have that
I = 5[1_ G ZP <\‘//((LL))> . (13)

we
For a lottery that resolves now,
v(x) — v(L)
= Plw L ).
7= 2 ) dE=n o

And for a binary lottery (L, G; p,1 — p), we have that .= p.
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We provide a novel way to generalize binary rank-dependent
utility, which is at the intersection of numerous choice model.

If v is linear, then (14) becomes the range-dependent utility
(Kontek, Lewandowski, 2018). Thus, (14) extends
range-dependent utility to losses, (13) includes delay, and (12)
adds multiple cash flows.

For a delayed binary prospect with L = 0, Baucells, Heukamp
(2012) provide axiomatic foundations for the discounted
probability approach v(CE) = w(e "¢ P)y(G). Our model
yields v(CE) = w(Sjo,61(t)P)v(G), and can be seen as a
generalization of the discounted probability approach not
only to delayed lotteries with multiple outcomes, but also to
uncertain cash flows, possibly with context effects.
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