
Mark Machina (UCSD) - our "publicity director" who asked
about monotonicity and invented the triangle



Drazen Prelec (MIT) who likes Miłosz poetry and who
discovered the most famous shape of the probability weighting
function



Monotonicity and continuity

Definition
The CE functional is monotonic wrt FOSD if whenever

x �FOSD y, CE(x) > CE(y).

Definition
The CE functional is continuous if for every sequence of

lottery payoffs {xn}, where n ∈ N and each xn is distributed

according to Fn, converging in distribution to the lottery

payoff y distributed according to G , the following holds:

lim

n�∞

CE(xn) = CE(y).



Monotonicity and continuity in the decision utility model

Define: C (η) = 1 − D(1 − η), η ∈ [0� 1]. And then also
RRAD (η) = −

ηD ��(η)
D �(η) , RRAC (η) = −

ηC ��(η)
C �(η) , η ∈ [0� 1]

Theorem (Monotonicity and Continuity)
1) The CE functional is monotonic wrt FOSD if and

only if RRAD and RRAC are non-decreasing.

2) The CE functional is continuous if and only if D is

linear.

a) Continuity wrt. upper range increase holds if and only

if RRAD is constant (power function).

b) Continuity wrt. lower range increase holds if and only

if RRAC is constant (inverse power function).



Indifference lines for the decision utility satisfying
monotonicity

best prize x1

p1

1

p3

medium prize x2 worst prize x3



Example 1: The CDF of the Beta distribution

D(x) = A

� x

0
tα−1(1 − t)β−1dt�

where x ∈ [0� 1]� A = 1� 1
0 tα−1(1−t)β−1dt

, and α� β > 0.

Monotonicity conditions are satisfied in four special cases:
a) linear: D(x) = x , α = β = 1,
b) concave inverse power: D(x) = 1 − (1 − x)β� β > 1, α = 1,
c) convex power: D(x) = xα

� α > 1, β = 1,
d) all S-shaped functions in this family, α� β > 1.



Example 2: The CDF of the Two-Sided Power Distribution

D(x) =

⎧
⎨

⎩
x0

�
x
x0

�
α

� 0 � x � x0�

1 − (1 − x0)
�

1−x
1−x0

�
α

� x0 � x � 1�

where x0 ∈ (0� 1), α > 0.

Monotonicity conditions are satisfied in four special cases:
a) linear: D(x) = x , α = 1,
b) concave inverse power: D(x) = 1 − (1 − x)α� α > 1,

x0 = 0,
c) convex power: D(x) = xα

� α > 1,x0 = 1,
d) all S-shaped functions in this class, α > 1, x0 ∈ (0� 1).

All inverse S-shaped functions in both classes are excluded.



Indifference lines for TSPD decision utilities
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Monotonicity and continuity for S-shaped functions
From now on let CE(xd ), CE(xu) denote the limits as � � 0

+.
1

0 10 20 30

x

d=
�
0� �; 10�

1
2 − �; 20�

1
2

�

y =
�
10�

1
2 ; 20�

1
2

�

x

u =
�
10�

1
2 ; 20�

1
2 − �; 30� �

�
p

CE(xu)<CE(y)<CE(xd )

I
Continuity is generally violated in the decision utility
model

I Monotonicity is typically satisfied for S-shaped fcns
I Monotonicity is always violated for inverse S-shaped

fcns



Monotonicity and continuity for the limiting functions

limiting functions D(x) CE(xd ) CE(y) CE(xu)
convex power x2

15�81 17�07 17�07

concave power √

x 14�57 12�5 12�5

convex inverse power 1 −

√

1 − x 17�5 17�5 15�43

concave inverse power 1 − (1 − x)2 12�93 12�93 14�81

I Power is continuous wrt upward range changes
I Inverse power is continuous wrt downward range

changes
I Concave power and convex inverse power violate

monotonicity
I Convex power and concave inverse power satisfy

monotonicity



EU Paradoxes

Coexistence of gambling and insurance:

(J − pJ� p; −pJ� 1 − p) � (0� 1)�
(H� 1 − p; 0� p) ≺ (H − pH� 1)�

This pattern of preferences is predicted by the decision
utility model if the following conditions are satisfied:

p > max(D(p)� 1 − D(1 − p))



D(p)
p

1

1 − p

D(1 − p)

0 1-p 1

D(r )

r

p

Figure: gambling – no gambling and insurance – no insurance
comparison.

I binary lotteries: DU is observationally equivalent to DT
I However psychologically very different, based on an

S-shaped utility function and hence much closer to
Markowitz (1952)



Harry Markowitz (La Jolla) who is more proud of his von
Neumann prize for his work on utility rather than his Nobel
prize for his work on optimal portfolio



Russian roulette
Two situations:

1. A six-shooter with 4 loaded chambers. How much would
you pay to remove one bullet?

2. A six-shooter with 2 loaded chambers. How much would
you pay to remove two bullets?

Expected Utility Theory predicts that the two prices should
be the same (Assumption: if you die you don’t care)

4

6

u(death) + 2

6

u(w ) = 3

6

u(death) + 3

6

u(w − P)
2

6

u(death) + 4

6

u(w ) = u(w − Q)

Assuming that u(death) = 0 and u(w ) = 1, we get:
u(w − P) = 2/3 = u(w − Q) � P = Q



Russian roulette
Let’s see how it is with the Decision Utility model:
death + (w − death)D−1

�
1

3

�
= death + (w − P − death)D−1

�
1

2

�

death + (w − death)D−1
�

2

3

�
= w − Q

Hence we get the following conditions:
D−1 �1

3
�

D−1
�1

2
� = w − P − death

w − death
D−1 �2

3
�

D−1 (1) = w − Q − death
w − death

Finally we get:
Q > P ⇐�

D−1 �2
3
�

D−1 (1) <

D−1 �1
3
�

D−1
�1

2
�



Russian roulette
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The Allais paradox and the Common Ratio effect
Let y > x > 0, 1 > p > q > 0, q

p > p,
e.g. y = $4 000, x = $3 000, q = 0�2, p = 0�25.

(B) (∗)

Allais

CR

(A) (∗)
q y

1 − p

x
p − q

0

≺

1

x

q
p y

1 −

q
p

0

≺

1

x

q y

1 − q

0

�

p x

1 − p

0

q y

1 − q

0

�

p x

1 − p

0

EU: (A),(B) equivalent and cannot coexist with (∗).
DU: (A),(B) equivalent and can coexist with (∗).
Rank: (A),(B) not equivalent and can coexist with (∗).



The Allais paradox and the Common Ratio effect

EU:

� �� �
(A)�(B)

u(W+x)
u(W+y ) <

(∗)� �� �
q
p <

u(W+x)
u(W+y ) ... contradiction

DU:

� �� �
(A)�(B)

D−1
�
q
p

�
<

(∗)� �� �
x
y <

D−1(q)
D−1(p) ... satisfied when D is flat in the

upper and steep in the middle part of its domain.

Rank:

� �� �
(A)

w (q)
w (q)+1−w (1−p+q) <

(∗)� �� �
x
y <

w (q)
w (p)

� �� �
(B)

w
�
q
p

�
<

(∗)� �� �
x
y <

w (q)
w (p)



Predictive accuracy

For binary lotteries, range dependence equivalent to rank
dependence.
How about more than two outcome lotteries? Convenient to
check in the MM triangle:
Harless (1992) finds that systematic violations of expected
utility disappear when lotteries are nudged inside the

triangle. Similar evidence: Conlisk (1989), Sopher, Gigliotti
(1993), Harless, Camerer (1994), Cohen (1992), Hey, Orme
(1994).



Nudging the lotteries inside the MM triangle: Allais

best prize x1

p1

1

p3medium prize x2 worst prize x3P
P’ R’

R

SQ



Nudging the lotteries inside the MM triangle: common ratio

best prize x1

p1

1

p3medium prize x2 worst prize x3P
P’ R’

R

S

Q



Predictive accuracy: comparison with CPT
Kontek (2018) nonparametrically fits indifference curves in
the MM triangle.
His choice of the grid is novel – more dense on the edges:Judgment and Decision Making, Vol. 13, No. 6, November 2018 Boundary effects in the Marschak-Machina triangle 589

Figure 2: The Marschak-Machina triangle with the lotteries

examined in the experiment.

of the indifference curves obtained non-parametrically in this
study (Section 8). This pattern suggests discontinuity in the
lottery valuation when the range of lottery outcomes changes
and is best explained by models based on the psychological
phenomenon of range dependence (Parducci, 1965; Cohen,
1992; Kontek & Lewandowski, 2018). Models founded on
other psychological phenomena, e.g., discontinuity in de-
cision weights (Kahneman & Tversky, 1979), cumulative
probability weighting (Tversky & Kahneman, 1992), atten-
tion shifting (Birnbaum, 2008), overweighting of salient
payoffs (Bordallo, Gennaioli & Shefrin, 2012), and treat-
ing stated probabilities as imperfect information (Viscusi,
1989), predict indifference curve shapes that differ from the
one obtained non-parametrically in this study.

2 Method

The idea of the non-parametric method of plotting indiffer-
ence curves comes from contour mapping: a contour line
(often simply called a “contour”) joins points of equal eleva-
tion (height) above a given level, e.g., mean sea level. The
procedure is as follows. First, the lotteries to be examined
are chosen; these are the points in the Marschak-Machina
triangle. Second, lottery certainty equivalents (CE) are de-
termined; these are the “heights” of the respective points.
Finally, these CE values are used to plot a contour map; the
contours are the required indifference curve(s) joining points
having the same interpolated CE value.

Figure 3: An example problem from the experiment.

2.1 Lotteries involved

The experiment involved 67 lotteries for each of two payoff
schedules: x1 = 0 zł, x2 = 150 zł, x3 = 300 zł (Triangle 1);
and x1 = 0 zł, x2 = 450 zł and x3 = 900 zł (Triangle 2).
Złoty (zł) is the Polish currency; $1 ≈ 4 zł, although the
purchasing power for basic goods is closer to identity. Of
the 67 lotteries, 3 were located in the corners of the triangle,
24 on the boundaries, and the remaining 40 in the interior.
To verify the boundary effects, the distribution of lotteries
was chosen to be more dense near the triangle boundaries
and corners (Figure 2).

The lotteries were constructed from the following list of p1

and p3 probabilities: {0, 0.01, 0.05, 0.2, 0.4, 0.6, 0.8, 0.95,
0.99, 1}. All combinations { p1, 1 − p1 − p3, p3} such that
1 − p1 − p3≥0 resulted in the lotteries: {0, 1, 0}, {0, 0.99,
0.01}, {0, 0.95, 0.05}, etc. The following lotteries were
added to verify the boundary effects close to the hypotenuse:
{0.04, 0.01, 0.95}, {0.19, 0.01, 0.8}, {0.39, 0.01, 0.6}, {0.6,
0.01, 0.39}, {0.8, 0.01, 0.19}, {0.95, 0.01, 0.04}, all having
p2 = 0.01 and {0.1, 0.05, 0.85}, {0.25, 0.05, 0.7}, {0.4 0.05,
0.55}, {0.55, 0.05, 0.4}, {0.7, 0.05, 0.25}, and {0.85, 0.05,
0.1}, all having p2 = 0.05.

2.2 CE determination

The term “certainty equivalent” was not used in the instruc-
tion (see Appendix 2), as it is unknown or difficult to un-
derstand for most people. The lotteries were presented in
the form of urns containing black, gray and white balls (for
lotteries located in the corners or on the edges of the triangle,
the balls were only one or two colors). To the right of the
urn containing the balls of three colors was another urn that
only contained balls with crosses.

An example problem is demonstrated in Figure 3. In this
sample problem, the value of the black ball was 300 zł, the
gray ball 150 zł, and the white ball 0 zł. The subjects had to
state the value that a ball with a cross would need to have to
make them indifferent between drawing a ball from the left



Predictive accuracy: comparison with CPT
What he gets is the following fit:
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Figure 5: 3D plots of the aggregated CE values: Triangle 1 (left); and Triangle 2 (right).
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Figure 6: Indifference curves in two Marschak-Machina triangles: Triangle 1 (left) with outcomes x1 = 0 zł, x2 = 150 zł, and

x3 = 300 zł; and Triangle 2 (right) with outcomes x1 = 0 zł, x2 = 450 zł, and x3 = 900 zł. The Mathematica® program draws

colored contour plots, so that areas of low CE contour values are marked using “cold” colors, and areas of high contour values

are marked using “warm” colors.

Finally, and most importantly for the present study, the
indifference curves appear to have jumps in the direction of
the origin near the legs of the triangle. Significantly, these
jumps are not observed near the hypotenuse.

3.4 Limitation and robustness of the method

The method of non-parametrically plotting indifference
curves is sensitive to noise and often results in plots of poor
quality when applied to individual data. At the same time,
it is very robust when the individual data are aggregated
using the 20% trimmed mean. The limitation and the ro-
bustness of the method will be illustrated by the following
simulation. Let us assume that the pattern of the indifference

curves presented in Figure 6 reflects the real preferences of
the “average” subject, but a Gaussian noise is added to every
aggregated certainty equivalent value:

Cnoise
i = CEi

(
1 + N

(
0,σ2

))
.

The simulated indifference curves are presented in Figure
7. As can be seen, even a small noise ( σ = 0.05, graph
on the left) seriously distorts the curves, and a larger one (
σ = 0.20, graph on the right) results in curves that would
suggest a lack of any pattern in the triangle interior and at its
boundaries. In fact, the plot on the right resembles the plots
of many of the subjects who took part in the experiment.
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Figure 9: Sub-areas of the Marschak-Machina triangle used to determine local slopes of indifference curves. The numbers

on the graph show the number of lotteries in each area.

Figure 10: Indifference curves estimated non-parametrically from the experiment presented together with local estimations

of their slopes in Triangle 1 (left) and Triangle 2 (right). The statistical significance of the estimated slope values is denoted

as: ** for p-value ≤ 0.01, and * for 0.01<p-value ≤ 0.05. Area A: 0 ≤ p1 ≤ 0.01 and 0.2 ≤ p3 ≤ 0.8; Area B: 0.01 ≤ p1 ≤ 0.2

and 0.2 ≤ p3 ≤ 0.8; Area C: 0.2 ≤ p1 ≤ 0.8 and 0.2 ≤ p3 ≤ 0.8; Area D: 0.2 ≤ p1 ≤ 0.8 and 0.01 ≤ p3 ≤ 0.2; Area E: 0.2 ≤
p1 ≤ 0.8 and 0 ≤ p3 ≤ 0.01.

4.1 The entire triangle

The minimum least squares procedure applied to aggregated
CE values in the entire triangle leads to b = 1.02 (0.03) for
Triangle 1, and b = 1.06 (0.03) for Triangle 2 (standard errors
are given in parentheses). This suggests that, on average, the
subjects demonstrated slight risk aversion.

4.2 Triangle sub-areas

The same least squares procedure may be applied in triangle
sub-areas to determine local slopes in indifference curves.
The triangle has been split into smaller regions as presented
in Figure 9. The numbers on the graph show the number of

lotteries in each area. It is assumed that lotteries located on

the boundaries between two regions (marked as dotted lines)

belong to both regions.

A linear regression procedure was performed in each of

these regions to obtain a number of linear models approxi-

mating the indifference curves locally (the number of degrees

of freedom in each model is 3 less than the number of lot-

teries). The b value estimations for aggregated CE values

are presented graphically in Figure 10. The statistical sig-

nificance of estimated slope values is marked with ** for

p-value ≤ 0.01, and * for 0.01 < p-value < 0.05. Definitions

of areas A, B, C, D, and E, which are most important for

deriving conclusions, are given in Figure 10.



Theoretical predictions of CPT and DUT

CPT predicts smooth
nonlinear curves with fanning
out.Judgment and Decision Making, Vol. 13, No. 6, November 2018 Boundary effects in the Marschak-Machina triangle 588

Figure 1: Indifference curve shapes predicted by: Expected Utility Theory (EUT, von Neumann & Morgenstern, 1944),

Cumulative Prospect Theory (CPT, Tversky & Kahneman, 1992), the TAX model (TAX, Birnbaum, 2008), Salience Theory

(ST, Bordalo, Gennaioli & Shefrin, 2012), Prospective Reference Theory (PRT, Viscusi, 1989), and the Decision Utility model

(DUT, Kontek & Lewandowski, 2018).

when all the lotteries are located in the interior of the triangle
(from which follows that the indifference curves are parallel
straight lines inside the triangle), but a different model has
to be used when some of the lotteries are located on the
boundaries or in the corners of the triangle. The literature
contains evidence of boundary effects (e.g., Conlisk, 1989),
although the shape of the indifference curves in the vicinity
of the triangle boundaries is not clearly stated. For instance,
Abdellaoui and Munier (1998) state only that the hypothe-
sis concerning parallelism of the indifference curves at the
triangle legs is strongly rejected.

This paper presents the results of a study that sheds new
light on the shape of indifference curves in the Marschak-
Machina triangle. The study was performed using a novel
method of non-parametrically plotting indifference curves
using certainty equivalents based on the common carto-
graphic practice of plotting contour maps (Section 2). The
approach allows the indifference curves to be visualized
(Section 3) in contrast to most previous studies, which tested
only hypotheses about the shapes of the indifference curves
in the entire triangle or in its regions (Section 6). Impor-
tantly, many of the lotteries considered in the present study
were located close to the Marschak-Machina triangle bound-
aries (a discussion on the optimal lottery grid is presented
in Section 7). This facilitated the observation of the bound-

ary effects, most importantly the jumps in the indifference
curves at the triangle legs towards the triangle origin (Sec-
tion 3). This effect is characterized by a sudden change in the
slopes of the indifference curves (Section 4). Such jumps,
however, do not appear at the hypotenuse. The indifference
curves in the triangle interior are parallel straight lines (with
a tendency to fan-in along, but not around, the two legs).

To confirm the main observations obtained non-
parametrically, an estimation of six decision-making mod-
els founded on various psychological phenomena was made
(Section 5). This included Expected Utility Theory (von
Neumann and Morgenstern, 1944), Cumulative Prospect
Theory (CPT, Tversky & Kahneman, 1992), Prospective Ref-
erence Theory (PRT, Viscusi, 1989), the TAX model (Birn-
baum, 2008), Salience Theory (ST, Bordalo, Gennaioli &
Shefrin, 2012), and the Decision Utility model (DUT, Kontek
& Lewandowski, 2018). As shown, the best fit is obtained by
the Decision Utility and Prospective Reference models, i.e.,
those that predict parallel straight indifference curves in the
triangle interior and discontinuous jumps at the triangle legs
towards the triangle origin. The Cumulative Prospect The-
ory model, which predicts nonlinear but smooth indifference
curves, was ranked only fourth. The model ranking naturally
leads to a discussion on which of the psychological phenom-
ena underlying the models might correctly explain the shape

DUT predicts straight parallel
lines discontinuous at the legs.
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Figure 1: Indifference curve shapes predicted by: Expected Utility Theory (EUT, von Neumann & Morgenstern, 1944),

Cumulative Prospect Theory (CPT, Tversky & Kahneman, 1992), the TAX model (TAX, Birnbaum, 2008), Salience Theory

(ST, Bordalo, Gennaioli & Shefrin, 2012), Prospective Reference Theory (PRT, Viscusi, 1989), and the Decision Utility model

(DUT, Kontek & Lewandowski, 2018).

when all the lotteries are located in the interior of the triangle
(from which follows that the indifference curves are parallel
straight lines inside the triangle), but a different model has
to be used when some of the lotteries are located on the
boundaries or in the corners of the triangle. The literature
contains evidence of boundary effects (e.g., Conlisk, 1989),
although the shape of the indifference curves in the vicinity
of the triangle boundaries is not clearly stated. For instance,
Abdellaoui and Munier (1998) state only that the hypothe-
sis concerning parallelism of the indifference curves at the
triangle legs is strongly rejected.

This paper presents the results of a study that sheds new
light on the shape of indifference curves in the Marschak-
Machina triangle. The study was performed using a novel
method of non-parametrically plotting indifference curves
using certainty equivalents based on the common carto-
graphic practice of plotting contour maps (Section 2). The
approach allows the indifference curves to be visualized
(Section 3) in contrast to most previous studies, which tested
only hypotheses about the shapes of the indifference curves
in the entire triangle or in its regions (Section 6). Impor-
tantly, many of the lotteries considered in the present study
were located close to the Marschak-Machina triangle bound-
aries (a discussion on the optimal lottery grid is presented
in Section 7). This facilitated the observation of the bound-

ary effects, most importantly the jumps in the indifference
curves at the triangle legs towards the triangle origin (Sec-
tion 3). This effect is characterized by a sudden change in the
slopes of the indifference curves (Section 4). Such jumps,
however, do not appear at the hypotenuse. The indifference
curves in the triangle interior are parallel straight lines (with
a tendency to fan-in along, but not around, the two legs).

To confirm the main observations obtained non-
parametrically, an estimation of six decision-making mod-
els founded on various psychological phenomena was made
(Section 5). This included Expected Utility Theory (von
Neumann and Morgenstern, 1944), Cumulative Prospect
Theory (CPT, Tversky & Kahneman, 1992), Prospective Ref-
erence Theory (PRT, Viscusi, 1989), the TAX model (Birn-
baum, 2008), Salience Theory (ST, Bordalo, Gennaioli &
Shefrin, 2012), and the Decision Utility model (DUT, Kontek
& Lewandowski, 2018). As shown, the best fit is obtained by
the Decision Utility and Prospective Reference models, i.e.,
those that predict parallel straight indifference curves in the
triangle interior and discontinuous jumps at the triangle legs
towards the triangle origin. The Cumulative Prospect The-
ory model, which predicts nonlinear but smooth indifference
curves, was ranked only fourth. The model ranking naturally
leads to a discussion on which of the psychological phenom-
ena underlying the models might correctly explain the shape



Which is the better match?

CPT against the data
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Figure 11: Indifference curves obtained non-parametrically (dashed) and predicted by the best-fit models.

best for the remaining 73.7%. The PRT model is generally

slightly less accurate than CPT on the individual level, and

the TAX model is the worst in this comparison.

A direct comparison was finally made between the two-

parameter versions of the CPT and the DUT models. In

this case, DUT offers more accurate fits for 51.5%-59.5% of

subjects and performs slightly better than CPT. The results

are presented in Table 4.

It may be argued that the model comparisons presented

in Tables 2, 3, and 4 identify a discrete “winning model”.

An SSE difference of 0.01 could lead one to claim that one

model is superior without any way to determine the differ-

ence between this situation and one where a model excels

by a difference of 100. Therefore, Table 4 presents also

mean and median absolute differences between the models

in terms of SSE (calculated as an average for all individuals).

DUT against the data
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Figure 11: Indifference curves obtained non-parametrically (dashed) and predicted by the best-fit models.

best for the remaining 73.7%. The PRT model is generally

slightly less accurate than CPT on the individual level, and

the TAX model is the worst in this comparison.

A direct comparison was finally made between the two-

parameter versions of the CPT and the DUT models. In

this case, DUT offers more accurate fits for 51.5%-59.5% of

subjects and performs slightly better than CPT. The results

are presented in Table 4.

It may be argued that the model comparisons presented

in Tables 2, 3, and 4 identify a discrete “winning model”.

An SSE difference of 0.01 could lead one to claim that one

model is superior without any way to determine the differ-

ence between this situation and one where a model excels

by a difference of 100. Therefore, Table 4 presents also

mean and median absolute differences between the models

in terms of SSE (calculated as an average for all individuals).



Comparing CPT and DUT - numerical results
The result of fitting 134 aggregated (20% trimmed mean) CE
values for a group of 237 subjects (undergraduate students):Judgment and Decision Making, Vol. 13, No. 6, November 2018 Boundary effects in the Marschak-Machina triangle 597

Table 1: Estimation results of several decision-making models under risk.

Parameters

Model SSE AIC BIC Est. value St. error p-value

EV 54 792.9 1190.1 1195.9

EUT 54 631.6 1189.7 1195.5 α = 0.99 0.02 < 10−101

ST 46 427.1 1169.9 1178.6 δ = 0.91 0.02 < 10−92

θ = 20904 43400 0.63

CPT 32 118.0 1122.5 1134.1 α = 1.12 0.05 < 10−46

γ = 1.09 0.04 < 10−52

δ = 0.86 0.01 < 10−96

TAX 30 183.1 1114.2 1125.8 α = 1.05 0.02 < 10−83

γ = 0.95 0.02 < 10−73

δ = 0.12 0.02 < 10−5

PRT 24 860.8 1086.2 1094.9 α = 0.96 0.01 < 10−124

β = 0.91 0.01 < 10−139

DUT 20 003.7 1057.1 1065.8 r0 = 0.40 0.02 < 10−37

δ = 1.24 0.02 < 10−105

the CDF of the Two-Sided Power Distribution (Kotz & van
Dorp, 2004):

D (r) =

⎧⎪⎪⎨

⎪⎪
⎩

r0

(
r
r0

)δ
0 < r≤r0

1 − (1 − r0)
(

1−r
1−r0

)δ
r0 < r≤1

,

where r = xi−xL
xH−xL

denotes the relative position of xi within
the lottery range [xL, xH ], δ is the parameter responsible
for the curvature (greater the parameter value, greater the
curvature), and r0 defines the value of r at which the curve
crosses the diagonal.

Salience Theory (ST; Bordalo, Gennaioli & Schleifer,
2012) provides a context-dependent representation of lot-
teries in which true probabilities are replaced by decision
weights distorted in favor of salient payoffs. The functional
for the lottery CE is not given in the original paper and
its derivation indicates flaws in the model (for details, see
Kontek, 2016). For instance, the CE value is undefined for
some probability intervals. More seriously, any assumption
regarding CE in those intervals violates monotonicity. Only
the formula for binary lotteries is presented below:

CEST =

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

xL + (xH − xL)
p

p+δ(1−p) p < δ
δ+A

AxL +
(A−1)θ

2
δ

δ+A
< p < 1

1+δA

xL + (xH − xL)
δp

δp+(1−p) p > 1
1+δA

,

where: A =
√

2xH+θ
2xL+θ

, p = pH , parameter θ affects the

salience function σ
(
xi, x j

)
=

|xi−x j |
|xi |+|x j |+θ

(greater the pa-

rameter value, lower the salience of payoffs in a given state),
parameter δ measures the extent to which salience distorts
decision weights (lower the parameter value, less salient
states are more discounted), and where a constant CE value
in the middle row is assumed to make the model operational.
The model predicts discontinuous jumps at all boundaries,
as introducing or removing an outcome results in a discon-
tinuous change in the predicted CE value. The indiffer-
ence curves are non-parallel straight lines (there are areas of
fanning-in, fanning out, and constant CE). Despite its pecu-
liar features, the ST model is used in this study because it
has recently gained a lot of attention among researchers.

5.2 Estimation results on the group level

The fit of 134 aggregated CE values was performed us-
ing the Mathematica “NonlinearModelFit” function, which
constructs a nonlinear least-squares model and assumes
that errors are independent and normally distributed. Pos-
sible settings for the search method include “Conjugate-
Gradient”, “Gradient”, “LevenbergMarquardt”, “Newton”,
“NMinimize”, and “QuasiNewton”, with the default being
“Automatic” (in which case the method is chosen automat-
ically by the function; this option was used in estimations).
The “NonlinearModelFit” function enables the parameter
space to be constrained, but this was not required for the ag-
gregate data (except of the ST model). The estimation results
are presented in Table 1. As can be seen, the two-parameter
DUT model offers the best fit, and the PRT model, which also
has two parameters, the next best. The three-parameter TAX
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Manel Baucells (Darden, U Virginia) who accepted our paper
in Management Science and started collaborating with
Krzysztof and me on extending the model.

Cap sa Sal, Costa Brava Sopot, Zatoka Gdańska



(Exponentially) Discounted Utility Theory
The main model for risk is Expected Utility. The main
model for intertemporal decisions is Discounted Utility

theory.
� = {0� 1� ����T} the time index set.
(ct � ct+1� ���� cT ), also denoted by (ct � c−t ), consumption streams
%t the preference relation over such streams
Utility that represents %t is the following:

DUt (ct � c1� ���� cT ) = u(ct ) +
T�

n=t+1

δ

n−tu(cn)�

where δ ∈ (0� 1), u is a strictly increasing instantaneous utility
function satisfying u(0) = 0.



Discounted utility theory - main properties
I

Impatience (dislikes the delay of gains)
I

Stationarity (preferences are invariant to adding
common delays in time): for any c � c �

� t� t �

� ∆

[c � t] %0 [c �

� t �] ⇐� [c � t + ∆] %0 [c �

� t � + ∆]

, where [c � t] denotes a consumption stream where
cs = 0 for s �= t and cs = c for s = t .

I
Separability:

I Current separability: for all c0� c �

0� c
−0� c�

−0:
(c0� c

−0) %0 (c0� c�

−0) ⇐� (c �

0� c
−0) %0 (c �

0� c�

−0) .
I Forward separability: for all c0� c �

0� c
−0� c�

−0:
(c0� c

−0) %0 (c �

0� c
−0) ⇐� (c0� c�

−0) %0 (c �

0� c�

−0).
I

Dynamic consistency: for all t , ct , c

−t , c

�

−t :
(ct � c−t) %t (ct � c�

−t ) ⇐� c

−t %t+1 c

�

−t .



Discounted Utility Theory paradoxes
Evidence against:

I Stationarity: preference reversal due to desire for
immediate gratification, e.g.:

[100� 0] %0 [105� 1] and [100� 12] %0 [105� 13]
I Separability: Loewenstein, Prelec (1993), 5 weekends, H

eat at home, F fancy French, L fancy Lobster:
Group I: option A: F �H�H�H�H [11%]

vs. option B: H�H�F �H�H [89%]

Group II: option C: F �H�H�H� L [49%]
vs. option D: H�H�F �H� L [51%]

I Dynamic consistency: Self control problems, e.g. I will
exercise tomorrow



Hyperbolic or quasi-hyperbolic discounting
Behavioral model for choice over time is quasi-hyperbolic
discounting (or beta-delta model):

BDUt (ct � c1� ���� cT ) = u(ct ) + β

�
T�

n=t+1

δ

n−tu(cn)
�

�

Quasihyperbolic approximates a non-tractable hyperbolic
case:

discounting/period 0 1 2 · · · T

exponential 1 δ δ

2
· · · δ

T

hyperbolic 1

1
1+k

1
1+2k · · ·

1
1+Tkquasi-hyperbolic 1 βδ βδ

2
· · · βδ

T

The BD model explains nonstationarity and dynamic
inconsistency but fails to explain non-separabilities.



Paradoxes for risk and time
Choice objects: (x � p� t), where x is money, p probability, t
time delay

Baucells and Heukamp: Probability and Time Trade-Off
832 Management Science 58(4), pp. 831–842, © 2012 INFORMS

cal distance function is useful to propose paired proba-
bility weighting and time discounting functions.

We do not directly address the source of time pref-
erence, such as impatience, savoring, planning con-
straints, timing of resolution, or changes in future
preferences (Epstein and Hynes 1983, Loewenstein
and Angner 2003). Instead, we characterize the shape
of risk and time preferences when the trade-off
between time and risk is done in a particular way.

2. Motivation from Experimental
Evidence

Table 1 presents some experimental evidence on how
subjects resolve the trade-offs in the 4x1p1 t5 domain.
We witness five preference patterns.

Pattern 1–2, the common ratio effect. This effect
implies a violation of proportionality in probabili-
ties. The common ratio effect is the origin of consid-
erable literature on nonlinear probability weighting
(Allais 1953).

Pattern 4–5, the common difference effect. This effect
implies a violation of stationarity or constant impa-
tience. Models incorporating such decreasing impa-
tience have entered mainstream economic analysis
(Laibson 1997).

Pattern 1–3, the common ratio using delay. Rather
than multiplying probabilities by a common factor,
the experimenters add a common delay. Preferences
shift toward the larger, less likely reward. Comparing
with 1–2 suggests that time acts as probability.

Pattern 4–6, the common difference using probabil-
ity. Rather than adding a common delay, the exper-
imenters multiply the probabilities by a common
factor. Preferences shift toward the larger, later
reward. Comparing with 4–5 suggests that probability
acts as time.

Pattern 7–8, subendurance. Choice 7 presents a trade-
off between a later more likely reward and an ear-
lier less likely reward. This trade-off is central in this

Table 1 Choices Between Prospects A and B

Prospect A vs. Prospect B Response N

1. (E9, for sure, now) vs. (E12, with 80%, now) 58% vs. 42% 142
2. (E9, with 10%, now) vs. (E12, with 8%, now) 22% vs. 78% 65
3. (E9, for sure, 3 months) vs. (E12, with 80%, 3 months) 43% vs. 57% 221
4. (f100, for sure, now) vs. (f110, for sure, 4 weeks) 82% vs. 18% 60
5. (f100, for sure, 26 weeks) vs. (f110, for sure, 30 weeks) 37% vs. 63% 60
6. (f100, with 50%, now) vs. (f110, with 50%, 4 weeks) 39% vs. 61% 100
7. (E100, for sure, 1 month) vs. (E100, with 90%, now) 81% vs. 19% 79
8. (E5, for sure, 1 month) vs. (E5, with 90%, now) 43% vs. 57% 79

Sources. Rows 1–3, Baucells and Heukamp (2010, Table 1); rows 4–6, Keren and Roelofsma (1995, Table 1) (f1 in 1995 equaled
$006); rows 7 and 8, Baucells et al. (2009).
Notes. Modal preferences are shown in bold. For rows 4–6, we do not know whether the authors employed real incentives. In all
the rest, some subjects were selected at random and one of their choices was played out for real money. For rows 4 and 5, there
is abundant evidence of the common difference effect using real incentives (Horowitz 1991, Loewenstein and Prelec 1992). Except
for row 7, the modal preference was significantly higher than 50% using a binomial test. Hence, the five preference patterns are
statistically significant. In all cases, the timing of resolution is set at t , except for row 6, in which it was not stipulated.

paper. The modal preference favors the later, more
likely reward. But if the reward is made smaller, then
preferences shift toward the earlier, less likely reward.

3. The Probability and Time
Trade-Off Model

3.1. Setup
We consider preferences over triplets 4x1p1 t5, which
describe the prospect of receiving some reward x at
time t with a probability p, where otherwise the pay-
off is zero. The reward, x, could be money or the
quantity of a divisible good. The decision maker’s
preference increases in x, and 0 is interpreted as the
neutral outcome (no gain, no loss). We assume that
the lottery is resolved and payed at t.

Formally, our choice set is M = X ⇥ P ⇥ T , where
X = 601à5, P = 60117, and T = 601à7. Note that the
time interval includes “never” (t =à). Let M+ be the
set of nontrival prospects, those with x > 0, p > 0, and
t <à; and let M0 be the set of trivial prospects, those
with xpe

Ét = 0. Let ¶ be a preference relation over
pairs in M possessing the following properties:

A1. (Ordering and Continuity). ¶ is a continuous
weak order on M.

A2. (Monotonicity). Let 4x1p1 t51 4y1 q1 s5 2M.

A2.1. If 4x1p1 t51 4y1 q1 s5 2 M0
, then 4x1p1 t5 ⇠

4y1 q1 s5.

A2.2. If 4x1p1 t5 2 M+ and x > y, then 4x1p1 t5 �
4y1p1 t5.

A2.3. If 4x1p1 t5 2 M+ and p > q, then 4x1p1 t5 �
4x1 q1 t5.

A2.4. If 4x1p1 t5 2 M+ and t < s, then 4x1p1 t5 �
4x1p1 s5.

A1 and A2 are standard and guarantee the rep-
resentation of preferences by a continuous function
V 4x1p1 t5 on M. On M0, V is constant, and without a

I Pattern 1-2: the common ratio effect
I Pattern 4-5: the common difference effect
I Pattern 1-3: the common ratio using delay
I Pattern 4-6: the common difference using probability
I Pattern 7-8: subendurance



Probability and time trade-off, Baucells, Heukamp (2012)

They consider preferences over triplets (x � p� t), which
describe a prospect of receiving $x with probability p in time
t , otherwise nothing.
Their idea is to see time as intrinsically uncertain: delaying
the receipt of a prize is equivalent to increasing uncertainty
of getting it.
They postulate the following axiom which is key in their
model:

(x � p� t + ∆) ∼ (x � θp� t) �� (x � q� s + ∆) ∼ (x � qθ� s)�

for all (x � p� t)� (x � q� s)� ∆ > 0� θ ∈ (0� 1).



Motivation for Range Utility Theory for risk and time
The normative (rational) theory for risk and time is
Discounted Expected Utility, U = E[exp(−ρt)u(Xt )]

We have good descriptive (behavioral) theories, but ONLY
for

I Gambles that resolve today, e.g. prospect theory
I Streams of positive outcomes under certainty, e.g.

hyperbolic discounting
Most problems involve both risk AND time:

I Investment decisions
I Options
I Incentive contracts
I Annuities
I Search



Motivation for Range Utility Theory for risk and time

We dont even have a behavioral model combining loss
aversion and hyperbolic discounting.
Our GOAL is to propose a general descriptive choice model
for uncertain cash-flows.
Uncertain cash flows is a very general domain, and
contains the important subdomains of:

I lotteries played today,
I lotteries played in the future,
I a schedule of payments under certainty,
I and a sequence of lotteries played over time, with or

without serial correlation.



Motivation for Range Utility Theory for risk and time

We build on the notions of Kontek, Lewandowski (2018) and
Baucells, Heukamp (2012)
KL 2018 replace rank principles for range principles.
We modify their model on three accounts:

I we introduce context dependence,
I we add reference-dependence with loss aversion.
I we relax shift and scale invariance.



Key idea 1
I A context � is a set of lotteries.
I It induces a range [L�G ]
I where L the worst and G the best outcome in �.
I Each lottery P may be evaluated:

I context-free – the range is then (−∞� +∞) – according to
the grand range utility v

I or context-dependent – according to u[L�G ]

I For each range, the latter is obtained as follows:

u[L�G ](x) = D����
range
effects

�
v (x) − v (L)
v (G ) − v (L)

�

� �� �
Parduccirange principle

� x ∈ [L�G ]� (3)

where D : [0� 1] � [0� 1] is continuous and strictly
increasing with D(0) = 0, D(1) = 1.



Extending the basic model

Difference to KL2018:
I The context induces the range not the lottery
I Shift and scale invariance implies:

u[L�G ](x) = D

�
x − L

G − L

�
� for x∈[L,G]�

We relax it to get:

u[L�G ](x) = D

�
v (x) − v (L)
v (G ) − v (L)

�
� for x∈[L,G]�

where v : X � R is reference-dependent with loss
aversion.



Key idea 1

Figure: The value function v (x) (top) is locally distorted by range
effects (bottom), yielding u[L�G ](x) = D

�
v (x)−v (L)
v (G )−v (L)

�
.

losses
gains

x
0

v
−100

u[−100�0]

−75

25

u[−75�25]

−25

75
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100
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Motivation for Range Utility Theory for risk and time

BH 2012 treat time as intrinsically uncertain. They introduce
probability and time-tradeoff to explain risk and time
paradoxes all together.
We generalize their model from single delayed payment to
uncertain cash-flows.



Key idea 2

An uncertain cash flow with given probabilities is replaced
by a two stage act.

I First stage: a“horse race" is run determining the period
in which the subjective termination event occurs – all
the cash-flow payoffs after this period become foregone.

I Second stage: a “roulette wheel" is spun which
determines the cumulative cash-flow for each
termination period.



Key idea 2

An uncertain cash flow The associated act

t = 0 t = 1 t = 2

−100
0�5
0�5

+40

+120
0�5 +200
0�5

+100
0�5 +70
0�5

+30

t = 0
1

−100
t = 1 0�5 +20 = −100 + 1200�5

−60 = −100 + 40
t = 2

0�25 +220 = −100 + 120 + 200
0�25 +120 = −100 + 120 + 1000�25

+10 = −100 + 40 + 700�25
−30 = −100 + 40 + 30



Structural assumption

Assumption
The decision maker is indifferent between any two cash

flows that induce the same act.



Two different cash-flows induce the same act. Let P(ωi ) = 0�125

cash-flow 1 cash-flow 2

0 1 2
ω1 ∪ ω2 −100 120 200
ω3 ∪ ω4 −100 120 100
ω5 ∪ ω6 −100 40 70
ω7 ∪ ω8 −100 40 30

0 1 2
ω1 −100 120 −10
ω2 −100 40 70
ω3 −100 120 −50
ω4 −100 40 30
ω5 −100 120 100
ω6 −100 40 180
ω7 −100 120 200
ω8 −100 40 280

the AA act

0 1 2
−100 1 0 0
−60 0 0�5 0
−30 0 0 0�25

10 0 0 0�25
20 0 0�5 0

120 0 0 0�25
220 0 0 0�25



Range and rank principles agree for binary gambles

According to (3), the CE of a lottery (L�G ; 1 − p� p), L < G , is
given by

D

�
v (CE) − v (L)
v (G ) − v (L)

�
= (1 − p)D(0) + pD(1) = p�

We apply D−1 to both sides and isolate v (CE ) to obtain
v (CE) = D−1(p)v (G ) + (1 − D−1(p))v (L)� (4)

Thus, for the case of eliciting CEs of binary lotteries, our
model is preferentially equivalent to rank dependent utility.
For three or more outcomes, or binary lotteries contained
on a larger context, the models diverge.



Preference reversal

Let (0� 120; 0�9� 0�1) be the $-bet and (0� 20; 0�2� 0�8) the p-bet.
Set v (0) = 0. When CEs are elicited each lottery is
considered separately, each with its own range. The
observed CE$ > CEp implies v (120)D−1(0�1) > v (20)D−1(0�8)�

When the two lotteries are compared side by side, the $-bet
dictates the range. The observed preference for the $-bet
implies 0�8D (v (20)/v (120)) > 0�1�

The two conditions together:

D−1
�

0�1

0�8

�
<

v (20)
v (120) <

D−1(0�1)
D−1(0�8) �

which is easy to meet if D is s-shaped.



Axioms

We now state the axioms we impose on %
�

⊂ �

2, � ∈ C.
A1 Weak order: Each %

�

is complete and transitive.
A2 Continuity: If a� b� c ∈ � and a �

�

b �

�

c then
αa + (1 − α)c �

�

b �

�

βa + (1 − β)c for some α� β ∈ (0� 1).
A3 Independence: If a� b� c ∈ � and a �

�

b, then
αa + (1 − α)c �

�

αb + (1 − α)c for all α ∈ (0� 1].
A4 Consequence Monotonicity: If δx � δy ∈ � and x > y ,

then δx �

�

δy .
A5 Range dependence: If r (�) = r (��) and a� b ∈ � ∩ �

�,
then

a %
�

b if and only if a %
�

� b�



Axioms
Let %∗ denote the preference relation on the grand context
�

∗ and, abusing notation a little, at denote the constant act
that offers lottery at in each state.
A6 Range-principle for risk: Any three of the following

indifferences imply the fourth one:
δx ∼ pδG + (1 − p)δL δx ∼

∗ p�

δG + (1 − p�)δL

δx �

∼ pδG � + (1 − p)δL�

δx �

∼

∗ p�

δG � + (1 − p�)δL�

�

A7 Symmetry: If 1
2δl + 1

2δg ∼

1
2δL + 1

2δG then
1
2δl + 1

2δg ∼

∗

1
2δL + 1

2δG .
A8 Essentiality: For every range [L�G ] and t ∈ � there exist

a� b ∈ �([L�G ]) such that ai = bi for all i �= t and
a �

�([L�G ]) b.
A9 State Monotonicity: If at %�

bt for all t ∈ �, then a %
�

b.



Representation for uncertain cash-flows
Theorem
If preferences (%

�

)
�

, � ∈ C satisfy A1–A9 if and only if

there exist:

a) a strictly increasing continuous and cardinally unique

function v : X � R,

b) a unique strictly increasing, continuous and surjective

function D : [0� 1] � [0� 1], such that D(x) = 1 − D(1 − x),
for x ∈ 0� 1

c) for every range [L�G ], a unique probability measure

µ[L�G ] : � � [0� 1] with µ[L�G ](t) > 0 for each t ∈ �,

such that for any context � ∈ C inducing the range [L�G ],
the preference %

�

is represented by U
�

: � � R, as given by

U
�

(a) =
T�

t=0

µ[L�G ](t)
�

x∈X

at (x)D
�
v (x) − v (L)
v (G ) − v (L)

�
� ∀a ∈ �� (5)



Representation for risk

Theorem
If preferences (%

�

)
�

over constant acts, � ∈ Cconst
, satisfy

axioms A1–A7 if and only if there exist functions v and D
as in Theorem 4

such that for any context � ∈ Cconst
inducing the range

[L�G ], the function U
�

: � � R that represents %
�

is given

by

U
�

(P) =
�

x∈X

P(x)D
�
v (x) − v (L)
v (G ) − v (L)

�
� ∀P ∈ �� (6)



Subjective survival
Given the subjective probabilities of the termination events
µ[L�G ] : � � [0� 1] we define the subjective survival function,
S[L�G ] : � � [0� 1] as follows:

S[L�G ](t) =
T�

i=t

µ[L�G ](i )� ∀t ∈ ��

interpreted as the subjective probability of the terminating at
or after t . Setting S[L�G ](T + 1) = 0, and rewriting (5):

U
�

(a) =
T�

t=0

�
S[L�G ](t) − S[L�G ](t + 1)

� �

x∈X

at (x)D
�
v (x) − v (L)
v (G ) − v (L)

�
�

(7)



Representation for cash-flows

Our preferences over acts can now be recasted as
preferences over cash-flows.

U
�

(X̃ ) =
T�

t=0

�
S[L�G ](t) − S[L�G ](t + 1)

� �

ω∈Ω
P(ω)D

�
v (

�t
i=0 x̃i ) − v (L)

v (G ) − v (L)

�
�

To single out the role of discounting, we can equivalently write:

U

�

(X̃ ) =
T�

t=0

S[L�G ](t)
�

ω∈Ω
P(ω)

�
D

�
v (

�t
i=0 x̃i ) − v (L)

v (G ) − v (L)

�
− D

�
v (

�t−1
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Special cases
If D(x) = x and S[L�G ](t) = S(t), then (8) becomes

U(X̃ ) =
T�

t=0

S(t)
�

ω∈Ω
P(ω)

�
v (

t�

i=0

x̃i ) − v (
t−1�

i=0

x̃i )
�

� (9)

For delayed lotteries, it particularizes into discounted
expected utility,
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For cash flows under certainty, the model agrees with Bell
(1974) model,
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Special cases

Alternatively, if v can be taken as linear (e.g., gains only, or
losses only, with minor income effects), then we obtain the
traditional expected discounted cash-flow model, possibly
with hyperbolic discounting, given by
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Special cases
The CE of an uncertain CF with range [L�G ] solves:
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(X̃ )� Let w (x) = D−1(x). Then we can
rewrite:
v (CE ) = w (π)v (G ) + (1 − w (π))v (L)� where (11)
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For a lottery that resolves at time t , we have that
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For a lottery that resolves now,
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And for a binary lottery (L�G ; p� 1 − p), we have that π = p.



We provide a novel way to generalize binary rank-dependent
utility, which is at the intersection of numerous choice model.
If v is linear, then (14) becomes the range-dependent utility
(Kontek, Lewandowski, 2018). Thus, (14) extends
range-dependent utility to losses, (13) includes delay, and (12)
adds multiple cash flows.
For a delayed binary prospect with L = 0, Baucells, Heukamp
(2012) provide axiomatic foundations for the discounted
probability approach v (CE ) = w (e−rG (t)P)v (G ). Our model
yields v (CE ) = w (S[0�G ](t)P)v (G ), and can be seen as a
generalization of the discounted probability approach not
only to delayed lotteries with multiple outcomes, but also to
uncertain cash flows, possibly with context effects.
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