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Outline of this part

1. Expected Utility Theory
2. Expected Utility paradoxes
3. Behavioral critique and Prospect Theory
4. Range-dependent utility model for risk
5. Paradoxes for risk and time
6. Range utility theory for risk and time



Setup

X - the set of consequences;

∆(X ) - the set of lotteries denoted by P �Q�R , i.e.
finite-support probability distributions over X

%⊂ ∆(X ) × ∆(X ) - preference relation, i.e. binary relation
over lotteries

We will say that a function U : ∆(X ) � R represents a
preference relation % if P % Q ⇐� U(P) � U(Q).

The symmetric and asymmetric parts of %, i.e. ∼ and �,
respectively, are defined the standard way.

Given two lotteries P �Q and a number α ∈ [0� 1],
αP + (1 − α)Q is also a lottery, called a mixture of P and Q .



Expected Utility axioms

% satisfies three axioms:
1. Weak order (% is complete and transitive)
2. Archimedean: if P � Q � R , then there exist numbers

α� β ∈ (0� 1), such that αP + (1 − α)R � Q � βP + (1 − β)R .
3. Independence: If P � Q , then

αP + (1 − α)R � αQ + (1 − α)R , for all α ∈ (0� 1) and R .



Expected Utility Theory

Theorem (von Neumann, Morgenstern, 1944)
A preference relation �⊆ ∆(X ) × ∆(X ) satisfies Axioms 1-3

if and only if

(Existence:) There is a function u : X � R such that the

function U : ∆(x) � R defined by

U(P) =
�

x∈supp(P) u(x)P(x) for each P ∈ ∆(X ) represents

%.

(Uniqueness:) Moreover, if u provides a representation of % in

this sense, then v does as well if and only if there exist

a� b ∈ R, a > 0, such that v (x) = au(x) + b for all x ∈ X .



Crucial implications of the axioms

Two implications of the axioms:
1. ∼ Betweenness: if P ∼ Q then P ∼ αP + (1 − α)Q ∼ Q .
2. ∼ Independence: if P ∼ Q then

αP + (1 − α)R ∼ αQ + (1 − α)R .
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Hidden assumption - Independence of states

An act is a finite-valued mapping f : S � X , where S is the
set of states of nature (mutually exclusive and exhaustive).

Let π be a well defined probability measure defined on all
subsets of S (we assume the full algebra).

Then the probability distribution of an act f is a mapping
Pf : X � [0� 1] such that Pf (x) =

�
{s∈S :f (s)=x}

f (s)�

Expected Utility Theory implicitly assumes that preferences
over acts are reducible to preferences over their probability
distributions, i.e. they are independent of the state space.

We will henceforth exchangeably write f % g meaning that
Pf % Pg .



Expected Utility interpretation

In order to apply Expected Utility theory, one needs to adopt
an interpretation.

The leading interpretation for many years was that of
consequentialism (Rubinstein, 2012).

It states that
1. there is a single preferences relation % over lotteries

defined on wealth levels (X is the set of wealth levels)
2. preferences over lotteries defined on wealth changes

%W , where W is a given wealth level, are derived from
% by:

f %W g ⇐� W + f % W + g �



Expected Utility paradoxes

Starting from the fifties, numerous evidence accumulated
showing that people violate Expected Utility. These violations
include:

1. Violations of independence
2. Violations of procedural invariance
3. Violations of description invariance
4. Matching the observed risk attitudes,



Violations of independence

Consequences in thousand dollars.

Common consequence effect (Allais, 1954)

P = (3� 1) � (4� 0�2; 3� 0�75; 0� 0�05) = Q �

R = (3� 0�25; 0� 0�75) ≺ (4� 0�2; 0� 0�8) = S

Common ratio effect

P = (3� 1) � (4� 0�8; 0� 0�2) = Q

R = (3� 0�25; 0� 0�75) ≺ (4� 0�2; 0� 0�8) = S



Common consequence effect in the MM triangle
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Common ratio effect in the MM triangle
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Violations of procedural invariance: WTA-WTP disparity

WTA is the smallest price I am willing to accept for the
lottery I own.

WTP is the highest price I am willing to pay for the lottery

In the Expected Utility of wealth model WTA and WTP may
differ only due to wealth effects

Starting form Knetsch, Sinden (1984), there were numerous
studies showing that for lotteries WTA often exceeds WTP
by more that 100%. (more on that later)



Violations of procedural invariance: Preference reversal

For a lottery P , the certainty equivalent is the sure amount,
such that the DM is indifferent between P and this amount.

There are two lotteries: the $-bet ($120� 0�1; $0� 0�9) and the
P-bet ($20� 0�8; $0� 0�2).

Preference reversal occurs when the DM prefers the P-bet
in a direct choice but assigns higher Certainty Equivalent to
the $-bet.

This phenomenon was first analyzed by Lichtenstein, Slovic
(1971) and Grether, Plott (1979).



Violations of description invariance: Narrow framing

First introduced by Kahneman, Tversky (1981). This effect
occurs if depending on the description of different
alternatives people change their decision.

Suppose a community is preparing for the outbreak of an
Asian disease which is expected to kill 600 people. You may
choose between the following two programs expressed in
terms of the number of lives saved:

200 vs. (600� 1/3; 0� 2/3)

Most people choose the sure option. If the same problem is
expressed in terms of lives lost:

−400 vs. (0� 1/3; −600� 2/3)

then most people reverse their choice and prefer the risky
option.



Framing



Framing

In addition to what you own, you are given $2,000. Which
option do you prefer:

A −$500 for sure
B’ (−$1000� 0�5; $0� 0�5)

In addition to what you own, you are given $1,000. Which
option do you prefer:

A’ $500 for sure
B’ ($1000� 0�5; $0� 0�5)

These two situations are payoff-equivalent:
I gamble A and A�: (w + 1�5�w + 1�5),
I gamble B and B �: (w + 2�w + 1)

Yet people make different choices.
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Psychology and Economics.
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Tomek Strzalecki (Harvard University) who axiomatized the
robust control model of Hansen, Sargent in spite of a firm
belief it cannot be done.



Problem

Problem 1:
Decision (i) Choose between:

A. A sure gain of $240
B. 25% chance to gain $1,000,

75% chance to lose nothing
Decision (ii) Choose between:
C. A sure loss of $750
D. 75% chance to lose $1,000,

25% chance to lose nothing.

Did you choose A and D?

Problem 2:
Choose between:

E. 25% chance to win
$240 and
75% chance to lose
$760

F. 25% chance to win
$250 and
75% chance to lose
$750.
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The status quo bias and the endowment effect

The status quo bias: First introduced by Samuelson,
Zeckhauser (1988). It occurs if people prefer things to stay
the same as they used to be by doing nothing or by sticking
with the decision made previously.

Endowment effect: First demonstrated by Knetsch, Sinden
(1984), it occurs when people overvalue a good that they
own, regardless of its objective market value. One famous
example concerning sure coffee mugs was given by
Kahneman et al. (1990).



Coffee mugs experiment

Kahnemann, Knetsch, Thaler (1990)
I half of the class is randomly given mugs
I those with mugs are asked to value them
I those without mugs are asked to bid for them
I the median Willingness to Pay (WTP) is $2.50 and the

median Willingness to Accept (WTA) is $5.25
I the market clears
I if nobody had loss aversion, this market would result in

trade equal to half of the quantity of the mugs
I yet, in reality few mugs change hands (about 10%)



Gain-loss asymmetry

Reference dependence: first proposed by Markowitz (1952);
people care about changes rather than levels of wealth;
outcomes are evaluated relative to some reference point
(often the status quo)

Loss aversion: means that losses loom larger than gains;
people dislike gambles of the form (x � 0�5; −x � 0�5), where
x �= 0. Furthermore, if 0 < |x | < |y | then people usually
express the following preference:
(x � 0�5; −x � 0�5) � (y � 0�5; −y � 0�5).



Rabin paradox

Rabin (2000) - calibration theorem

If an EU agent rejects lottery ($110� 0�5; −$100� 0�5) at any
initial wealth level

Then s/he will also reject the lottery (+$∞� 0�5; −$1000� 0�5).



The reflection effect

The table taken from Kahnemann, Tversky, 1979



The reflection effect, four-fold pattern of risk attitudes and
coexistence of insurance and gambling

The reflection effect means that the preference between
loss prospects is the mirror image of the preferences
between gain prospects.

The reflection effect together with the certainty/possibility
effect implies the so called four-fold pattern:

small probability large probability
gain risk seeking risk aversion
loss risk aversion risk seeking

This pattern also accommodates the phenomenon of
coexistence of insurance and gambling.



Other violations

1. Violations of monotonicity

I People choose stochastically dominated lotteries,
I Let FP denote the CDF of a lottery P . We say that P

dominates Q if FP (x) � FQ (x) for all x ∈ R with strict
inequality for at least one x .

2. Violations of transitivity

I It occurs if people choose P over Q , Q over R and R
over P .

3. event-splitting effects

I Starmer, Sugden (1993) demonstrated that when an event
that gives a given outcome is split into two sub-events,
there is a tendency for that outcome to carry more
weight even though its total probability is unchanged.

4. Etc.



Prospect Theory

Motivated by the EU paradoxes, Kahnemann, Tversky (1979)
and then Tversky, Kahnemann (1992) proposed Prospect

Theory. Its crucial elements are:
I

Reference dependence with loss aversion
I

Probability weighting

Reference dependence replaces consequentialism. It is a
different interpretation.

Probability weighting challenges Independence, the key
axiom of Expected Utility Theory.



Value and weighting functions

Value function Probability weighting function

no loss aversion

loss aversion



Is Expected utility an Ex-hypothesis?

Rabin, Thaler (2001) declared Expected Utility an
ex-hypothesis or a dead parrot alluding to the famous sketch
from Monthy Pythons Flying Circus.

We feel much like the customer in the pet shop, beating

away a dead parrot.



EU theory vs model

What Rabin, Thaler (2001) criticize is in fact not Expected
Utility Theory, but the model of Expected Utility of
lifetime-wealth.

One should distinguish between theory and model:
1. theory: abstract, mathematical, axioms
2. model: theory plus interpretation

The model of Expected Utility of lifetime-wealth combines
EU theory and consequentialism.

Abandoning consequentialism and replacing it with other
interpretations while keeping Expected Utility removes many
EU paradoxes, for example the Rabin paradox (Cox, Sadiraj,
2006, Palacios-Huerta, Serrano, 2006).



Different models based on Expected Utility

Different interpretations consistent with Expected Utility
Theory:

1. Expected Utility of gambling wealth: EU theory and
mental accounting (Lewandowski, 2014, Foster, Hart,
2009)

2. Reference-Dependent Expected Utility (Sugden, 2003,
Schneider, Day, 2016, Lewandowski, 2019)

3. Range-dependent utility (Kontek, Lewandowski, 2018)
Following Palacios-Huerta, Serrano (2006) we may cite Mark
Twain and say:

The reports of my death were an exageration.



Range-dependent utility - outline

1. Range effects (Parducci, 1964)
2. Based on Parducci, we propose

range-dependent utility (RDU) for risk – as general
theory.

3. Based on Tversky, Kahnemann (1992) experimental data
we propose the decision utility model (DU) - special
case of RDU used for prediction:

4. Important properties of the model: Monotonicity wrt
FOSD and continuity



Allen Parducci (Pacific Palisades) who coinvented windsurfing
and proposed one of the most famous theory of
psychophysical judgment



Range-frequency theory

Range-Frequency Theory was proposed by Parducci (1965)

Psychophysical judgment is a compromise between two
principles:

1. the range principle R
I subjects locate each stimulus relative to the subjective

end values.
I Let s1� ���� si � ���� sN be the stimulus values in the context of

stimuli affecting the judgment of si arranged in the
increasing order.

Ri = si − smin
smax − smin

�

2. the frequency principle F
I differences in response are proportional to differences in

stimulus rank
I 1� ���� i � ����N denote the stimuli ranks:

Fi = i − 1
N − 1

�



Range effects

We focus on range effects. Example:
1. Tropical island, the temperature always in the 80s, the

natives complain of:
I the heat when the temp is 88,
I the cold when the temp is 82.

For us, on the contrary, such differences are hardly
noticeable.

Other examples:
1. Expensive dish in the restaurant menu.
2. Eye-adaptation process. Two theories:

I Adapation-level theory (Helson, 1963)
I Range-frequency theory (Parducci, 1964)



Tversky, Kahnemann (1992) data

Data used to motivate Cumulative Prospect Theory:
No xl xu p CE
1 0 50 0,10 9,0
2 0 50 0,50 21,0
3 0 50 0,90 37,0
4 0 100 0,05 14,0
5 0 100 0,25 25,0
6 0 100 0,50 36,0
7 0 100 0,75 52,0
8 0 100 0,95 78,0
9 0 200 0,01 10,0
10 0 200 0,10 20,0
11 0 200 0,50 76,0
12 0 200 0,90 131,0
13 0 200 0,99 188,0
14 0 400 0,01 12,0
15 0 400 0,99 377,0
16 50 100 0,10 59,0
17 50 100 0,50 71,0
18 50 100 0,90 83,0
19 50 150 0,05 64,0
20 50 150 0,25 72,5
21 50 150 0,50 86,0
22 50 150 0,75 102,0
23 50 150 0,95 128,0
24 100 200 0,05 118,0
25 100 200 0,25 130,0
26 100 200 0,50 141,0
27 100 200 0,75 162,0
28 100 200 0,95 178,0



Expected Utility fits poorly
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Assignment

1. Fit the data with the Expected Utility model:
a) Choose arbitrary utility values for the outcomes 50, 100,

150, 200, and u(0) = 0, u(400) = 1.
b) Assume that the vNM utility function has the CARA

form: u(x) = 1−e−αx

1−e−α400 , for x ∈ [0� 400].
c) Invert the function and apply it to the utility values to

obtain the theoretical CE values.
d) Minimize the sum of squared deviation of the real CE

values from the theoretical ones by adjusting the vNM
utility function parameter α and the utility values that
you were asked to arbitrarily choose at the beginning.

2. To see that the fit is poor, you need to portion the data
into lotteries having the same range and then
superimpose the function that you have found.



TK (1992) data
p CE

No p CE 0 50 0.00 0
1 0 50 0.10 9.0 0 50 0.10 9.0
2 0 50 0.50 21.0 0 50 0.50 21.0
3 0 50 0.90 37.0 0 50 0.90 37.0
4 0 100 0.05 14.0 0 50 1.00 50.0
5 0 100 0.25 25.0
6 0 100 0.50 36.0
7 0 100 0.75 52.0
8 0 100 0.95 78.0
9 0 200 0.01 10.0
10 0 200 0.10 20.0
11 0 200 0.50 76.0 .
12 0 200 0.90 131.0
13 0 200 0.99 188.0 .
14 0 400 0.01 12.0
15 0 400 0.99 377.0 .
16 50 100 0.10 59.0
17 50 100 0.50 71.0
18 50 100 0.90 83.0
19 50 150 0.05 64.0
20 50 150 0.25 72.5
21 50 150 0.50 86.0
22 50 150 0.75 102.0 p CE
23 50 150 0.95 128.0 100 200 0.00 100.0
24 100 200 0.05 118.0 100 200 0.05 118.0
25 100 200 0.25 130.0 100 200 0.25 130.0
26 100 200 0.50 141.0 100 200 0.50 141.0
27 100 200 0.75 162.0 100 200 0.75 162.0
28 100 200 0.95 178.0 100 200 0.95 178.0

100 200 1.00 200.0

xl xu
xl xu

xl xu

I Fix the range [L�G ]
I Assign u[L�G ](L) = 0 and

u[L�G ](G ) = 1

I Construct utility:
u[L�G ](CE ) = p

I Here we fit a nonlinear,
strictly increasing and
surjective function
u[L�G ] : [L�G ] � [0� 1].



Fitting range-dependent utility functions

I The fit is very
good

I But requires a
separate
utility for
each range

I Observe,
however, that
the graphs
differ mostly
in shift and
scale of the
consequences.



Fitting the decision utility function

I Normalize all lottery
ranges and consequences
into a common interval
[0� 1]

I Define a single function
D : [0� 1] � [0� 1], called
the decision utility

function

I The fit is still very good,
I but now we have only

one utility.



Setup

I X – set of monetary alternatives
I ∆ – set of finite-support lotteries

I ∆d – set of degenerate lotteries
I A degenerate lottery δx assigns probability 1 to a single

consequence x .
I

the range of lottery P Conv(suppP) is a proper real
interval [L�G ].

I ∆c
[L�G ] – set of lotteries that are comparable in the

range [L�G ] is the union of two sets:
I ∆[L�G ] – set of lotteries with range equal to [L�G ]
I ∆d

[L�G ] – set of degenerate lotteries with support in [L�G ]



Axioms

A "range-dependent" preference relation %⊂ ∆ × ∆ satisfies
the following axioms:

Axiom (1)Weak Order: % is complete and transitive.

Axiom (2)Within-Range Continuity: For any interval [L�G ] ⊂ X ,

L < G and for every Q ∈ ∆c
[L�G ] the following holds:

δG � Q � δL ��

∃α� β ∈ (0� 1) : αδG + (1 − α)δL � Q � βδG + (1 − β)δL�



Axioms

Axiom (3)Within-Range Independence: For any interval [L�G ] ⊂ X ,

L < G , for every P �Q�R ∈ ∆, such that

αP + (1 − α)R � αQ + (1 − α)R ∈ ∆c
[L�G ], for all α ∈ (0� 1] the

following holds:

P % Q ⇐� αP + (1 − α)R % αQ + (1 − α)R � ∀α ∈ [0� 1]�

Axiom (4)Monotonicity: For all x � y ∈ X the following holds:

x > y ⇐� δx � δy



Discussion on axioms

Continuity and Independence are weakened.
Within-Range Continuity: allows violations of continuity
when lottery ranges differ

1
2 1

1
2 0

�

1 − �

1

�

−1M
for all � > 0

1
2 1

1
2 0

≺

�

1M

1 − �

0

for all � > 0



Discussion on axioms

Within-Range Independence: allows violations of
independence when lottery ranges differ.

P
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Range-dependent utility representation

Theorem (General theory)
A preference relation %⊂ ∆ × ∆ satisfies axioms A1–A4

if and only if

for every interval [L�G ] ⊂ X � L < G there exists a unique

strictly increasing and surjective function

u[L�G ] : [L�G ] � [0� 1], such that for every pair of lotteries

P �Q ∈ ∆ the following holds:

P % Q ⇐� CE(P) � CE(Q)� (1)

where the certainty equivalent is defined as:

a) CE(P) = u−1
Rng(P)

��
x∈X P(x)uRng(P)(x)

�
for any

P ∈ ∆ \ ∆d
,

b) CE(δx ) = x � x ∈ X for any δx ∈ ∆d
.



Intuition

I The same consequence might be assigned two different
utility values depending which lottery (with its range) it
supports.

I CE values, instead of utility values, are used to represent
choices between lotteries having different ranges.



The intersection of range-dependent utility and EU

1. The case of a universal range: In real life there always
exists a tiny chance to die at once or to find a billion
dollars on the street.

I Broad framers always use a universal range (and hence
are rational); narrow framers on the other hand exhibit
EU paradoxes

2. The case of consequentialism: Let u be a utility over
lifetime wealth levels. We accommodate the EU model
of lifetime wealth by taking: u[L�G ](x) = u(W+x)−u(W+L)

u(W+G )−u(W+L) ,
∀x ∈ [L�G ], for each interval [L�G ].



The case of consequentialism

utility of wealth u

u[A�B]
u[A�C ]
u[B�C ]

A B C

1

A B C



Additional axiom: Shift and scale invariance

Definition
For a lottery P ∈ ∆, P : X � [0� 1] define its

α� β-transformation P
α�β

∈ ∆, P
α�β

: X � [0� 1], such that

P(x) = P
α�β

(αx + β), where α� β ∈ R, α > 0, x ∈ X and

αx + β ∈ X , for all x ∈ supp(P).

Axiom (5)Scale and Shift invariance: Let P �Q ∈ ∆c
[L�G ] for some

[L�G ] ⊂ X , L < G . Then the following holds:

P % Q ⇐� P
α�β

% Q
α�β

for any α > 0� β ∈ R : P
α�β

�Q
α�β

∈ ∆c
αL+β�αG+β

.

In what follows it is assumed that [0� 1] ⊂ X .



The decision utility representation

Theorem (Model for prediction)
A preference relation %⊂ ∆ × ∆ satisfies axioms A1–A5

if and only if

there exists a unique strictly increasing and surjective

function D : [0� 1] � [0� 1], such that for every pair of

lotteries P �Q ∈ ∆ the following holds:

P % Q ⇐� CE(P) � CE(Q)� (2)

where the certainty equivalent is defined as:

a) CE(P) = L + (G − L)D−1 ��
x∈X P(x)D

�
x−L
G−L

��
, for any

P ∈ ∆ \ ∆d
, where L = min(Rng(R)), G = max(Rng(R)),

b) CE(δx ) = x � x ∈ X for any δx ∈ ∆d
.



Discussion on the axiom

1. The family (u[L�G ]) is induced from a single decision
utility function D by taking:

u[L�G ](x) := D

�
x − L

G − L

�
� ∀x ∈ [L�G ]�

2. Due to axiom (5) the model exhibits Constant Risk

Aversion of Safra and Segal (1998)
I The model intersects EU in the case of risk neutrality

I under EU: shift invariance ≡ CARA, scale invariance ≡

CRRA, shift and scale invariance ≡ linear utility



Observational equivalence btw. Decision Utility and Dual
Theory (rank dependence)

Consider a binary lottery payoff (L� 1 − p;G � p)

Decision utility: CE(x) = L + (G − L)D−1(p)�
Dual Theory: CE(x) = L + (G − L)w (p)�

I The same predictions iff D−1 = w .
I Evidence for binary lottery provides equal support for

probability weighting and range dependence.
I For more than 2 outcomes the models can be

discriminated.
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