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1 Preliminaries

Let (Ω,F ,P) be a finite probability space, fixed for the rest of the paper. Let

S be some real interval. A random variable defined on this space, X : Ω → S,

is called a lottery. The space of all lotteries is denoted by X . The probability

distribution of X ∈ X is a mapping PX : S → [0, 1] such that

PX(x) =
∑

ω∈Ω:X(ω)=x

P(ω), for all x ∈ supp(X),

where supp(X) = {x ∈ S : X(ω) = x, for some ω : P(ω) > 0}. Note that

lotteries have finite support because the underlying probability space is finite.

We focus on Expected Utility maximizers. For them the only part of a lottery

relevant for making decisions is its probability distribution. Hence, for simplic-

ity, we will refer to both X ∈ X as well as its probability distribution PX as to

a lottery.

Expectations are taken over the relevant probability distributions. A typical

lottery will be denoted as 〈x1, ..., xn; p1, ..., pn〉, where xi ∈ S are outcomes and

pi ∈ [0, 1] are the corresponding probabilities. It is assumed w.l.o.g. that its

consequences are ordered x1 < x2 < ... < xn. We will also denote min(X) as

the minimal element in the support of X and E(X) as the expected value of

X. Denote by XR as the set of lotteries with positive expectation and possible

losses. Formally:

XR = {X ∈ X : E(X) > 0, min(X) < 0}.

Consequences in S are assumed monetary and interpreted as wealth posi-

tions.

Assumption 1.1. Preferences over lotteries obey expected utility axioms. The

vNM utility function U : S → R is strictly increasing, strictly concave and

continuous.

Remark 1.1. Strict monotonicity means that more sure money is better than

less. Strict concavity is equivalent to risk aversion: for any nondegenerate

lottery, the decision maker prefers to receive the expected monetary value of a

lottery to a lottery itself.

Remark 1.2. Continuity is a technical requirement. However, note that any

strictly increasing concave function U : S → R is continuous on every interval

(a, b] ⊂ S so the condition of continuity is only relevant if S contains its lower

boundary points.
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Remark 1.3. Any utility function satisfying Assumption 1.1 decreases at least

linearly as x → inf S. Hence U cannot be bounded from below unless inf S >

−∞.

We will add more assumption on U as we go along. Specifically, if U is

twice continuously differentiable, the Arrow-Pratt measure of (absolute) risk

aversion is a function ARA(x) = −U ′′(x)
U ′(x) , defined on the intS. The (relative)

risk aversion is a function RRA(x) = xARA(x).

Definition 1.1. A twice continuously differentiable utility function U : (0,∞) →
R satisfying Assumption 1.1 belongs to the DARA class if ARA is a decreasing

function. It belongs to the CRRA class if RRA is a constant function. In the

latter case, up to linear transformation U takes the form:

Uα(x) =


x1−α−1
1−α , 0 < α < 1, x ≥ 0

log x, α = 1, x > 0
x1−α−1
1−α , 1 < α, x > 0

(1)

The set of such functions is denoted by: U(DARA), U(CRRA), respectively.

We shall often abuse notation and write U(0) for limW→)0+ U(W ), provided it

exists.

Remark 1.4. Note that since the domain is bounded from below, the utility

function may be bounded from below as well.

Remark 1.5. Note that U(CRRA) is a strict subset of U(DARA).

Remark 1.6. Note that the CRRA class is normalized such that all the func-

tions in this class cross at the point (1, 0). We then obtain log as the limiting

case: limα→1
x1−α−1
1−α = limα→1

− log x
−1 = log x.

Remark 1.7. Note that we can shift the utility functions in U(DARA) to any

interval (a,+∞) by defining U∗ : (a,+∞) → R such that U∗(x) = U(x−a). So

the restriction on the domain of the function is really that it is bounded from

below, not more that that.

In what follows, we shall interpret S as the set of wealth levels and inf S = 0

as wealth level associated with bankruptcy. We will denote the decision maker’s

initial total wealth as W and the net winnings from accepting a given risk as

X. We require that all relevant wealth positions are in the set S = (0,+∞),

i.e. we assume that the decision maker cannot accept negative wealth positions,

below the bankruptcy level.
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We now define buying and selling price for a lottery along the lines of Raiffa

(1968) . We also define a riskiness measure which extends the one proposed in

Foster and Hart (2009).

Unless otherwise stated, we assume that U satisfies Assumption 1.1 and

is fixed. Given an agent with initial wealth level W , S(X,W ) is the minimal

amount he is willing to accept in exchange for X. Similarly, B(X,W ) is the

maximal amount he is willing to pay for X. Formally:

Definition 1.2. Given an agent U with initial wealth level W ∈ R as well

as lottery X, selling price of X, denoted by S(X,W ), and buying price of X,

denoted by B(X,W ) are defined as real numbers satisfying:

EU [W +X] = U [W + S(X,W )] (2)

EU [W +X −B(X,W )] = U(W ) (3)

For a given lottery X we will be interested in selling and buying prices

of X as functions of wealth. These will be denoted by S(X, ·) and B(X, ·),
respectively.

Definition 1.3. Given an agent U and a lottery X ∈ XR the U -riskiness

measure of X, denoted by R(X) is defined as a real number satisfying:

EU [R(X) +X] = U [R(X)] (4)

We wish to study the existence and uniqueness of measures defined above.

Before we do it, we need some preliminary results. We first provide some basic

equivalences between B, S and R provided they exist.

Proposition 1.1. Suppose that U ∈ U(DARA) is fixed. Provided they exist

and are unique, B, S and R satisfy the following equivalences.

0 ≡ S[X −B(X,W ),W ] (5)

B(X,W ) ≡ S[X,W −B(X,W )] (6)

S(X,W ) ≡ B[X,W + S(X,W )] (7)

W ≡ R[X − S(X,W )]− S(X,W ) (8)

W ≡ R[X −B(X,W )] (9)

B[X,R(X −∆)] ≡ S[X,R(X −∆)−∆] (10)

0 ≡ S[X,R(X)] ≡ B[X,R(X)] (11)
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Proof. The equivalences follow directly from the definitions. For example the

first of the above equivalences is easily checked as follows:

U(W ) = EU{W + [X −B(X,W )]}

= EU(W + Y )

= U [W + S(Y,W )]

= U{W + S[X −B(X,W ),W}

The condition (5) follows. The rest of proved similarly.

2 Results

2.1 Existence and uniqueness

The following theorem due to Dybvig and Lippman (1983) implies that if R(X)

exists, then it is unique. Following Yaari (1969), for a lottery X and an agent

U , define the acceptance set AX := {W ∈ R : EU(W +X) > U(W )} as the set

of wealth levels at which the DM strictly prefers to accept the lottery.

Theorem 2.1 (Dybvig and Lippman (1983)). Let U be a strictly increasing

concave utility function with continuous second derivative. Then the absolute

risk aversion ARA is nonincreasing if and only if for each gamble X, AX is an

interval of the form (θX ,+∞), where −∞ ≤ θX ≤ +∞.

Proposition 2.1 (DARA). i. Bernoulli utility function exhibits DARA

ii. For any lottery X and wealth W such that B(X,W ) and S(X,W are

defined, the following holds: dB(X,W )
dW ∈ (0, 1) and dS(X,W )

dW > 0. Moreover,

for a non-degenerate lottery X ∈ X , it holds:

B(X,W ) > 0 ⇐⇒ B(X,W ) < S(X,W )

Proof. In Lewandowski (2013) and Lewandowski (2014).

Proposition 2.2. Suppose that U ∈ U(DARA). Then for any nondegenerate

X ∈ X there exist Al(X), Au(X) ∈ (min(X),E(X)) given by:

EU [−min(X) +X] = U [−min(X) +Al(X)] (12)

E exp(−αX) = exp[−αAu(X)] (13)

where α = limW→∞ARA(W ), such that the functions:

S(X, ·) : (−min(X),∞) → (Al(X), Au(X))

B(X, ·) : (−min(X) +Al(X),∞) → (Al(X), Au(X))

5



are strictly increasing and surjective. Moreover,

Al(X) = min(X) ⇐⇒ lim
W→0+

U(W ) = −∞ (14)

Au(X) = E(X) ⇐⇒ lim
W→+∞

ARA(W ) = 0 (15)

Proof. We begin by proving the result for the selling price S and then use

the equivalence (7) in Proposition 1.1 to extend it to the buying price B. If

U : (0,∞) → R is continuous then for any lottery X ′ := W + X there exists

its certainty equivalent CE(X ′) := W + S. If U is strictly increasing then the

certainty equivalent of a lottery is unique. Since dom(U) = (0,∞), a unique

number S(X,W ) exists as defined by (2) for anyX ∈ X iffW ∈ (−min(X),∞).

Since U is strictly concave then for any nondegenerate lottery X by Jensen’s

inequality S(X,W ), B(X,W ) < E(X)). Since U is strictly increasing then

by Expected Utility S(X,W ), B(X,W ) > min(X). Note that since S(X, ·) is

strictly increasing by Proposition 2.1, then arg infW [S(X,W )] = Al(X) is ob-

tained for W = −min(X) and so it is given by (12). By the previous argument

it must lie in (−min(X),E(X)). I now prove (14). Suppose that the RHS

of the equivalence (14) does not hold so that limW→0+ U(W ) = M > −∞.

Then for any nondgenerate X, Al(X) cannot be equal to min(X) since in

this case EU(−min(X) + X) > U(−min(X) + min(X)) = M and the con-

dition 12 does not hold. So Al(X) must be strictly greater than min(X).

On the other hand, if limW→0+ U(W ) = −∞, then −∞ = EU(−min(X) +

X) < U(−min(X) + Al(X)) unless Al(X) = min(X). Hence the equiva-

lence (14) holds. We now show that Au(X) is given by (13). Suppose that

limW→∞ARA(W ) = α ≥ 0. Then we now that for any ε > 0 there ex-

ist W0 such that for all W > W0, ARA(W ) − α < ε. So, as W tends

to infinity the utility function U becomes closer and closer to the CARA

utility with ARA(W ) = α. Such utility is, up to positive linear transfor-

mations, of the form U(x) = 1 − exp(−αx). Hence, the limiting case of

S(X,W ) as W tends to infinity is given by (13). I now prove (15). Sup-

pose the RHS of the equivalence does not hold, so that limW→=∞ARA(W ) =

α > 0. Using a Taylor series approximation around wealth W up to the sec-

ond order, the LHS of equation (2) can be written as E[U(W ) + U ′(W )X +
1
2U

′′(W )X2] = U(W ) + U ′(W )
[
E(X)− 1

2ARA(W )E(X2)
]
. The RHS of (2),

on the other hand, can be approximated by U(W ) + U ′(W )S(X,W ). So

S(X,W ) ≈ E(X) − 1
2ARA(W )E(X2). Since 0 < E(X2) < ∞ because X is

nondegenerate and finitely supported, so we know that supW S(X,W ) < E(X)

because ARA(W ) = α > 0 for all W . So the ⇒ direction of (15) is proved.
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Now we prove the opposite direction. Suppose that limW→=∞ARA(W ) = 0.

Using (13) we write that Au(X) = − 1
α ln [E exp(−αX)]. One can easily verify

using the de l’Hospital rule that limα→0+ Au(X) = E(X). So the equivalence

(15) is proved. So we have proved the proposition for the selling price S(X,W ).

By 7 one can easily verify the proposition for B(X,W ).

Proposition 2.3. Let U ∈ U(DARA). The following are equivalent:

1. The utility function satisfies:

a) U is unbounded from below.

b) limx→+∞ARA(x) = 0.

2. for a nondgenerate X ∈ X ,

S[X, (−min(X),∞)] = B[X, (0,∞)] = (min(X),E(X)). (16)

3. a unique U -riskiness measure exists for all X ∈ XR.

We will say that S and B that satisfy (16) have full range.

Proof. The equivalence between 1. and 2. is a corollary to proposition 2.2. That

1. implies 3. follows from the equivalence between 1. and 2. and (11). We

have that 1. holds iff (16) holds. For X ∈ XR, infW S(X,W ) = min(X) < 0

and supW S(X,W ) = E(X) > 0. Since U is continuous, so is S(X, ·). It

is furthermore strictly increasing and hence there must exist a unique W ∈
(−min(X),∞) such that S(X,W ) = 0. By (11) it is the extended riskiness

measure of X. We now prove that 3. implies 1. We now prove that 2. implies

1. Contrary to 1.a) Suppose that U is bounded from below. It means that

limW→0+ U(W ) = M for some M > −∞. Consider X = 〈−1, t; ε, 1 − ε〉. We

require that ε > 0 and t > ε
1−ε so that X ∈ XR. Note that for any ε > 0

the second requirement is satisfied by taking t large enough, which is possible

as dom(U) does not have an upper bound. We know that since U is strictly

increasing, U(1 + t) − U(1) = δ > 0. Then choose epsilon > 0 such that
δ

−M < ε
1−ε . Note that it is possible for any strictly increasing U . We have that:

lim
W→1

φ(X,W ) = lim
W→1

εU(W − 1) + (1− ε)U(1 + t)− U(W )

> εM + (1− ε)δ

> 0
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where the last inequality follows from our assumption. We now invoke (Dybvig

and Lippman, 1983) theorem once again by which we know that for a nonin-

creasing ARA, φ(X,W ) > 0 for someW implies φ(X,W ′) > 0 for anyW ′ > W .

Since we know φ(X,W ) > 0 for the lowest possible level of W → −min(X),

then it must be that φ(X,W ) > 0 for all W ∈ (0,+∞). Hence R(X) does not

exist.

Now contrary to 1.b) assume that limx→+∞ARA(x) = δ > 0. Since U is

DARA, it follows that ARA(x) ≥ δ for all x. Then choose ε ∈ (0, 1) such that

δ > 2ε
1+ε2

. It always can be done because for the RHS of this inequality tends

to 0 as ε does. Now consider the lottery X = 〈−1+ ε, 1+ ε; 0.5, 0.5〉. Note that

E(X) = ε > 0 and P(X < 0) = 0.5 > 0 since epsilon < 1, so that X ∈ XR Now

we approximate using second order Taylor expansion around W :

φ(X,W ) = E
[
U(W ) +XU ′(W ) + 1

2U
′′(W )X2

]
− U(W )

= U ′(W )
[
ε− 1

2ARA(W )(1 + ε2)
]

< 0.

where the last inequality follows from ARA(W ) > 2ε
1+ε2

. So X is rejected at

any wealth level and R(X) does not exist.

Remark 2.1. If U belongs to U(DARA) and satisfies the conditions stated in

1.a) and 1.b) in proposition 2.3 then for any X ∈ X , X − s ∈ XR if and only if

s = S(Y,W ) for some W ∈ domS(X, ·). On the other hand, if the conditions

stated in 1.a) or 1.b) are violated, then ”if and only if” statement in the above

equivalence should be replaced with the ”if” statement only. Obviously, S in the

above statement can be replaced with B.

Remark 2.2. It is worth noting that the condition limW→0+ ARA(W ) = +∞
is not sufficient to ensure the existence of R(X) for any X ∈ XR. One needs

stronger requirement that the utility is unbounded from below. As a counter

example, consider U(W ) = W 0.5. It is clear that for this utility function

limW→0+ ARA(W ) = +∞. However, consider X = (+500,−100, 0.5, 0.5). It

clearly belongs to XR. However, it is easily verifiable that for W ∈ (100,∞),

EU(W +X)− U(W ) > 0, and hence R(X) does not exist.

Definition 2.1. For X ∈ X , s, b ∈ rng[S(X, ·)] = rng[B(X, ·)], define φ(X, s), ψ(X, b) ∈
R such that φ(X, s) = R(X − s)− s and ψ(X, b) = R(X − b).

The above definitions will be useful in establishing the relationship between

S and B on the one hand, and R on the other. φ(X, ·) provides the inverse of
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the S(X, ·) and ψ(X, ·) provides the inverse of B(X, ·). We shall analyze mostly

the selling price S and φ and infer the corresponding properties of B using the

equivalence (7) and of ψ using the fact that ψ(X, b) = φ(X, b) + b. We first

begin by stating some equivalences that will be used later on. For any lottery

X and W ∈ domS(X, ·), s ∈ rngS(X, ·) the following holds:

W ≡ φ[X,S(X,W )] (17)

s ≡ S[X,φ(X, s)] (18)

2.2 Main result

Proposition 2.4. Let U be a function satisfying the assumptions stated in

the introduction. For X,Y ∈ X , let A = domS(X, ·) ∩ domS(Y, ·) and B =

rngS(X, ·) ∩ rngS(Y, ·). The following relationships hold:

1. R(X−s) = R(Y−s) for some s ∈ B if and only if S(X,W ) = S(Y,W ) = s

for some W ∈ A.

2. If R(Y − s) > R(X − s) for some s ∈ B, then S(X,W ) > S(Y,W ) for

W ∈ [R(X − s)− s,R(Y − s)− s] ∩A.

3. If S(X,W ) > S(Y,W ) for some W ∈ A, then R(Y − s) > R(X − s) for

s ∈ [S(Y,W ), S(X,W )] ∩B.

Proof. We first prove 1. Let X,Y ∈ X . Assume that R(X − s) = R(Y − s) for

s ∈ B. This is equivalent to φ(X, s) = φ(Y, s) = W for W ∈ A. And this in

turn is equivalent to S(X,W ) = S(Y,W ) = s for s ∈ B.

We now prove 2. Assume that R(Y − s) > R(X − s) for some s ∈ B.

Using the definition of φ this is equivalent to φ(Y, s) > φ(X, s). We know that

φ(Y, s) ∈ A or φ(X, s) ∈ A because s ∈ B. Since A = [a,∞) for a > −∞, we

know that φ(Y, s) ∈ A. Take W = φ(Y, s). By definition of φ, this is equivalent

to s = S(Y,W ). Using the equivalence (17) and rewriting we get:

φ(Y, s) > φ(X, s), for s ∈ B

⇐⇒ φ[X,S(X,W )] =W = φ[Y, S(Y,W )] > φ[X,S(Y,W )]

Since for anyX ∈ X , S(X, ·) is strictly increasing, so is its inverse φ(X, ·). Using

this fact, the above inequality is equivalent to S(X,W ) > S(Y,W ). Now take

any V < W such that V ∈ A and V ≥ φ(X, s). Since S(Y, ·) and S(X, ·) are

strictly increasing, for any such V , S(X,V ) ≥ S(X,φ(X, s)) = s = S(Y,W ) >

S(Y, V ). This concludes the proof of 2.
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We now prove 3. Suppose S(X,W ) > S(Y,W ) for W ∈ A. Since W ∈ A,

then it must be that S(X,W ) ∈ B or S(Y,W ) ∈ B. We consider three cases:

Suppose only S(X,W ) ∈ B. Let s = S(X,W ), which by definition of φ, is

equivalent to φ(X, s) =W . Then using the equivalence (18) we have:

S(X,W ) > S(Y,W ), for W ∈ A

⇐⇒ S[Y, φ(Y, s)] = s = S[X,φ(X, s)] > S[Y, φ(X, s)]

So by the strict monotonicity of S(Y, ·), we have that φ(Y, s) > φ(X, s) or, by

the definition of φ, R(Y − s) > R(X − s). Now take t < s such that t ∈ B

and t ≥ S(Y,W ). By strict monotonicity of φ(X, ·) and φ(Y, ·), for all such

t, φ(Y, t) ≥ φ[Y, S(Y,W )] = W = φ[X,S(X,W )] = φ(X, s) > φ(X, t), and so

φ(Y, t) > φ(X, t). This concludes the proof for the first case. The second case

is when only S(Y,W ) ∈ B. Let s = S(Y,W ), so that φ(Y, s) = W . Then, by

similar arguments as before:

S(X,W ) > S(Y,W ), for W ∈ A

⇐⇒ S[X,φ(Y, s)] > S[Y, φ(Y, s)] = s = S[X,φ(X, s)]

So φ(Y, s) > φ(X, s) or R(Y − s) > R(X − s). Take t > s such that t ∈ B and

t ≤ S(X,W ). For all such t, by strict monotonicity of φ(X, ·) and φ(Y, ·), it
holds: φ(X, t) ≤ φ[X,S(X,W )] = W = φ[Y, S(Y,W )] = φ(Y, s) < φ(Y, t), and

so φ(X, t) < φ(Y, t). This concludes the second case. The final case is when

both S(X,W ) ∈ B and S(Y,W ) ∈ B. In this case we can choose s to be either

one of the two. We assume that s = S(X,W ) and so φ(X, s) = W . By similar

arguments as above we obtain that φ(X, s) < φ(Y, s). Now take t < s such

that t ≥ S(Y,W ). We know that t ∈ B since B is connected and both S(X,W )

and S(Y,W ) belong to to B. We then have by strict monotonicity of φ(X, ·)
and φ(Y, ·), that φ(Y, t) ≥ φ[Y, S(Y,W )] = W = φ[X,S(X,W )] = φ(X, s) >

φ(X, t), and so φ(Y, t) > φ(X, t). This concludes the third case and the proof

of 3.

The following are further properties of S,B and R:

Proposition 2.5. For any U ∈ U(DARA), any X ∈ X , and any ∆,W ∈ R,
the following holds:

R(X +∆) ≤ R(X)−∆ ⇐⇒ ∆ ≥ 0

B(W,X +∆) = B(X,W ) + ∆ (19)

S(W,X +∆) = S(W +∆, X) + ∆ (20)
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Remark 2.3. Note that R does not satisfy the translation invariance property.

However, if for a given U and W we define θ(X) := −B(X,W ) as a measure of

risk, then this measure satisfies translation invariance: θ(X +∆) = θ(X)−∆.

3 Riskiness measure of Foster-Hart

Foster and Hart (2009) define an operational measure of riskiness as follows.

The initial wealth is W1 > 0. At every period t = 1, 2, ..., the decision maker

with wealth Wt is offered a gamble xt. He may accept or reject the gamble.

His wealth next period is Wt+1 = Wt + xt if he accepts and Wt+1 = Wt if he

rejects. Simple strategy of the decision maker whether to accept gamble xt at

time t or not is assumed to be stationary Markov strategy - it depends only on

the gamble xt and current wealth level Wt. Simple strategy is homogeneous or

scale-invariant if ”accept X at W” implies ”accept λX at λW”, for any λ > 0.

If borrowing is not allowed, bankruptcy occurs when wealth converges to

zero as time goes to infinity. A given strategy s yields no-bankruptcy for the

process (xt)t=1,2,... and the initial wealthW1 if probability of bankruptcy is zero,

i.e. P [limt→∞Wt = 0] = 0. Strategy guarantees no-bankruptcy if it yields no-

bankruptcy for every process (xt)t=1,2,... and every initial wealth level W1. The

technical assumptions state that gambles are assumed to be finite-valued, with

finite support and such that E[X] > 0 and P[X < 0] > 0, where P[E] denotes

a probability of an event E (positive expected value and losses are possible).

The stochastic process (xt)t=1,2,... is assumed to be finitely generated.
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The main theorem of Foster and Hart (2009) states the following.

Theorem 3.1 (Foster and Hart (2009)). For every gamble X there exists a

unique real number RFH(X) > 0 such that: a homogeneous strategy s guaran-

tees no-bankruptcy if and only if for every gamble X and wealth W > 0,

W < RFH(X) ⇒ s rejects X at W

Moreover, RFH(X) satisfies the following equation

E
[
log

(
1 +

X

RFH(X)

)]
= 0 (21)

Foster and Hart (2009) call RFH(X) the measure of riskiness of X.

There is a link between the riskiness measure and expected utility maximiz-

ing individuals. Consider an expected-utility maximizer with utility function

U :

accept X at W ⇐⇒ EU(W +X) ≥ U(W ) (22)

Notice that for the logarithmic utility function I can rewrite condition on the

RHS of (22) in relative - instead of absolute - terms, as follows:

E
[
log

(
1 +

X

W

)]
≥ 0

It is clear that the index RFH(X) has the property that the logarithmic utility

rejects X if W < RFH(X) and accepts X if W ≥ RFH(X). Hence by the

theorem above logarithmic utility represents a strategy that is among those

which guarantee no-bankruptcy.

3.1 Extension to DARA

Before I will proceed to the next subsection, I want to demonstrate that for a

certain class of DARA utility functions which are not necessarily CRRA, no-

bankruptcy is guaranteed. First I will need the following lemma, which is also

of interest for its own sake.

Without loss of generality1 assume that utility function U satisfies the following:

U(1) = 0 and U ′(1) = 1. Given such utility function U define relative risk

aversion function as RRA(x) = −U ′′(x)x
U ′(x) . For utility function which is denoted

Ui I will use notation RRAi for the corresponding relative risk aversion function.

Then the following lemma is true.

1Cardinal utility function is unique only up to affine transformation.
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Lemma 3.1. For some δ > 0, suppose that RRAi(y) > RRAj(y) for all y such

that |y| < δ. Then Ui(y) < Uj(y) whenever y 6= 1 and |y| < δ

Proof. First, let me say that the proof is very similar to that used in lemma 2

of Aumann and Serrano (2008). They prove a similar proposition for absolute

risk aversion.

Let |y| < δ. If y > 1, then

logU ′
i(y) = logU ′

i(y)− logU ′
i(1)

=

∫ y

1
[logU ′

i(z)]
′dz

=

∫ y

1

U ′′
i (z)

U ′
i(z)

dz

= −
∫ y

1

RRAi(z)

z
dz

< −
∫ y

1

RRAj(z)

z
dz = logU ′

j(y)

If 0 < y < 1, then

logU ′
i(y) = logU ′

i(y)− logU ′
i(1)

= −
∫ 1

y
[logU ′

i(z)]
′dz

= −
∫ 1

y

U ′′
i (z)

U ′
i(z)

dz

=

∫ 1

y

RRAi(z)

z
dz

>

∫ 1

y

RRAj(z)

z
dz = logU ′

j(y)

Hence logU ′
i(y) ≶ logU ′

j(y), when y ≷ 1. It follows that U ′
i(y) ≶ U ′

j(y), when

y ≷ 1.

If y > 1, then

Ui(y) =

∫ y

1
U ′
i(z)dz <

∫ y

1
U ′
j(z)dz = Uj(y)

If 0 < y < 1, then

Ui(y) = −
∫ 1

y
U ′
i(z)dz < −

∫ 1

y
U ′
j(z)dz = Uj(y)

And hence the lemma is proved.

Equipped with lemma 3.1 I can now demonstrate for which DARA utility

functions in general the condition of no-bankruptcy is guaranteed.
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Proposition 3.1. For all bounded-valued lotteries and for all DARA utility

functions for which RRA(x) ≥ 1, ∀x ∈ D, where RRA(x) is relative risk

aversion function evaluated at x and D is the utility function’s domain, no-

bankruptcy is guaranteed.

Proof. No-bankruptcy is guaranteed for logarithmic utility function for which

relative risk aversion coefficient is equal to one. Take a DARA utility function

U for which relative risk aversion is not less than one for all arguments in

the domain of U . For any wealth level W I can normalize U without loss of

generality so that U(W ) = log(W ). By lemma 3.1, since RRA(y) ≥ 1 for all

finite y, it is true that U(y) ≤ log(y) and by normalization U(W ) = log(W ). It

follows that if logarithmic utility function ”rejects” a lottery X, utility U also

”rejects” this lottery. And hence it also guarantees no-bankruptcy.

4 Buying/selling price and the riskiness measure for

the special case of CRRA

The proposition below establishes the range, domain and some properties of

the selling and buying price for a lottery as functions of wealth for the CRRA

class of utility functions.

Proposition 4.1 (CRRA). Given the class of CRRA utility functions defined

by (1), for any non-degenerate lottery X ∈ X the functions S(·, X) and B(·, X):

a) are strictly increasing and strictly concave,

c) are one-to-one functions with the following domains and ranges:

• The case of α > 1 (including the limiting case α→ 1):

dom[S(·, X)] = (−x1,+∞) ran[S(·, X] = (x1,E[X])

dom[B(·, X)] = (0,+∞) ran[B(·, X)] = (x1,E[X])

• The case of α ∈ (0, 1)

dom[S(·, X)] = (−x1,+∞) ran[S(·, X)] = (Wα(X) + x1,E[X])

dom[B(·, X)] = (Wα(X),+∞) ran[B(·, X)] = (Wα(X) + x1,E[X])

where Wα(X) = U−1
α [EUα(−x1 +X)] which is finite for the case of α ∈ (0, 1).

Proof. Strict monotonicity follows from proposition 2.1 above. The domain

and range of the above functions is established in Lewandowski (2014). This

14



result taken together with strict monotonicity implies that the functions are

one-to-one. Strict concavity is proved in Lewandowski (2013).

I define measure R for lottery X for CRRA utility function. This measure

should satisfy the following condition:

1

1− α
E
(
1 +

X

R(X)

)1−α

− 1

1− α
= 0 (23)

for a given lottery X and coefficient α. I want to ensure that such measure is

well defined and unique. As already proved in the previous subsection measure

of riskiness is unique if it exists. The necessary conditions are already provided

in the former subsection and in particular, I will focus only on non-degenerate

n-dimensional lotteries X with bounded values2 such that P[X < 0] > 0 and

E(X) > 0. Furthermore, I will restrict attention only to wealth levels W , such

that W ≥ L(X) > 0. The fact that L(X) > 0 follows from the fact that X may

take negative values. Define lottery Y = 1 + X
W . Notice that this lottery takes

only non-negative values. It takes the lowest value of zero for xi = −L(X) for

some i ∈ {1, ..., n}, since W ≥ L(X).

Notice that for the function form above, the following is true: U(1) = 0, U ′(y) =

y−α and U ′(1) = 1. Suppose there are two different CRRA utility functions

with relative risk aversion coefficients equal to αi and αj , respectively. Suppose

further that αi > αj . Then from lemma 3.1 I know that U(y, αi) < U(y, αj),

for y ∈ [0, δ), some δ > 0 and y 6= 1. Hence,

1

1− αi
E
(
1 +

X

R(X)

)1−αi

− 1

1− αi

<
1

1− αj
E
(
1 +

X

R(X)

)1−αj

− 1

1− αj

Let’s define the following function:

φ(λ, α) =
1

1− α

n∑
i=1

pi[1 + λxi]
1−α − 1

1− α
(24)

0 ≤ λ ≤ 1

L(X)
, xi ∈ [−L(X),+M(X)]

where M(X) is the maximal gain in X and L(X) is the maximal loss of X,

both assumed to be finite.

I want to find out whether this function has a unique λ > 0, for which this

function is equal to zero, given α, and whether it has a unique α for which the

function is equal to zero, given that λ = 1
L(X) . It turns out that the answer to

both questions is positive, as I will demonstrate below.

2The following condition holds: there exists δ > 0 such that |xi| < δ ∀i ∈ {1, ..., n}.
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Lemma 4.1. The following properties characterize function φ:

φ(0, α) = 0

∂φ(λ, α)

∂λ
=

n∑
i=1

pi[xi(1 + λxi)
−α]

∂φ(λ, α)

∂λ

∣∣∣∣
λ=0

=

n∑
i=1

xipi = E[X] > 0

∂2φ(λ, α)

∂2λ
= α

n∑
i=1

pix
2
i (1 + λxi)

−α−1 < 0 for α > 0

lim
λ→ 1

L(X)

lim
α→1

φ(λ, α) = −∞

lim
λ→ 1

L(X)

φ(λ, 0) = lim
λ→ 1

L(X)

n∑
i=1

pi(1 + λxi)− 1 =
1

L(X)
E[X] > 0 (25)

Furthermore limλ→ 1
L(X)

φ(λ, α) is a continuous function of α and it is strictly

monotonic in α (see lemma 3.1). Therefore the following result holds:

Proposition 4.2. Given function φ(λ, α) and a random variable X with n

values denoted by xi for i = 1, ..., n, where E(X) > 0 and P[X < 0] > 0, the

following is true. Denote L = L(X) and M =M(X).

∃!α∗ < 1 :


α < α∗ φ( 1L , α) > 0

α = α∗ φ( 1L , α) = 0

α > α∗ φ( 1L , α) < 0

Furthermore, suppose I take α > α∗ and fix it. Then:

∃!λ∗ :


λ < λ∗ φ(λ, α) > 0

λ = λ∗ φ(λ, α) = 0

λ > λ∗ φ(λ, α) < 0

Proof. Follows from the above stated properties of a function φ (lemma 4.1).

The above proposition states that riskiness measure for CRRA is defined

for α ≥ α∗, where α∗ depends on a lottery. In this case the riskiness measure

is unique. For different α’s from the set of α’s satisfying α > α∗ I get different

λ∗, which is the inverse of the riskiness measure. Let’s define a function λ∗(α),

where α > α∗ and φ(λ∗(α), α) = 0. I have the following proposition:

Proposition 4.3. The function λ∗(α) is decreasing in α.
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Proof. Suppose α1 > α2 and that α1 > α∗. Then

0 = φ(λ∗(α1), α1)

=
1

1− α1

n∑
i=1

pi(1 + λ∗(α1)xi)
1−α1 − 1

1− α1

<
1

1− α2

n∑
i=1

pi(1 + λ∗(α1)xi)
1−α2 − 1

1− α2
= φ(λ∗(α1), α2)

Hence:

φ(λ∗(α1), α2) > 0

φ(λ∗(α2), α2) = 0

Since φ(λ, α) is concave in λ and φ( 1L , α) < 0, I conclude that λ∗(α2) > λ∗(α1).

The above proposition states that the higher is α, the relative risk aversion

coefficient, the higher is riskiness measure, which is the inverse of λ∗(α). It

confirms a conjecture that since rejecting for wealth being below riskiness mea-

sure based on α = 1 (Foster and Hart (2009) riskiness measure) guarantees no

bankruptcy, also rejecting for wealth below riskiness measure based on α > 1

guarantees no bankruptcy, as it means more rejection. To illustrate the above

propositions and clarify the meaning of the different concepts and variables,

look at the graph below:

This graph depicts the shape of φ(λ, α) function for different values of relative

risk aversion α within the CRRA class of utility functions. For α between 0

and α∗ an extended riskiness measure is not defined since in this case function

φ does not cross the zero axis. An extended riskiness measure is defined if

α ≥ α∗. Furthermore, it is also clear from the picture that an extended riski-

ness measure for values of α greater than 1 is necessarily greater than RFH(X)

and hence rejecting X at wealth smaller than the extended riskiness measure

in this case also guarantees no-bankruptcy.

5 Concluding remarks

In this paper I analyzed riskiness measure as introduced by Foster and Hart

(2009). I gave simple intuition behind their result and I tried to make some

steps towards extending this measure in two respects - first to define an extended

riskiness measure based on DARA utility functions and derive necessary and

sufficient conditions for existence and uniqueness of such measure for DARA
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Figure 1: An extended riskiness measure for CRRA utility

and CRRA class of utility functions. Obviously, for the more specialized case of

CRRA utility functions more exact conditions are obtained than for the more

general case of DARA utilities. I also tried to extend the domain of riskiness

measure. For gambles with non-positive expectation or no losses I proposed a

way to compare their riskiness by subtracting prices from them. If the riskiness

ordering is unchanged over the whole range of prices for which the lottery minus

the price exists is unchanged, something can be inferred about the riskiness of a

gamble without prices. To this end a number of useful properties relating buying

and selling price for a lottery and riskiness measure were established and should

be useful also for their own sake. An extension of Pratt (1964) famous result

on comparative risk aversion involving riskiness measure along with buying and

selling price for a lottery was stated and proved. Finally a simple link between

decision-making using riskiness measure and decision-making using buying and

selling price was developed.
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Appendix

Lemma 5.1. Given any lottery X and wealth level W , the following three

relations between buying price and selling price hold:

S[W,X −B(X,W )] = 0 (26)

S[W −B(X,W ), X] = B(X,W ) (27)

B[W + S(X,W ), X] = S(X,W ) (28)

Proposition 5.1. For any non-degenerate lottery X and any wealth W such

that buying and selling price exist, S(X,W ) and B(X,W ) lie in the interval

(min(X),E(X)). For a degenerate lottery X, S(X,W ) = B(X,W ) = x.

The following is a corollary to Pratt (1964) famous theorem of comparative

risk aversion.

Corollary 5.1. For a strictly increasing and twice differentiable utility function

U with continuous second derivative, the following holds:

• S(X,W ) is increasing/constant/decreasing in W for every X iff A(W ) is

decreasing/constant/increasing in W

Proposition 5.2. For any lottery X and any wealth W , for utilities with de-

creasing absolute risk aversion (DARA) the following equivalence holds:

B(X,W ) > 0 ⇐⇒ B(X,W ) < S(X,W )

Notice that for DARA utility function and B(X,W ) > 0 the above result

together with proposition 5.2 implies the following:

S(W,X+∆)−B(W,X+∆) = S(W +∆, X)−B(X,W ) > S(X,W )−B(X,W )

Proposition 5.3. For a strictly increasing and twice differentiable utility func-

tion U with continuous second derivative, the following holds:

• B(X,W ) is increasing/constant/decreasing in W for every X iff A(W )

is decreasing/constant/increasing in W

Lemma 5.2. For differentiable DARA utility functions, given any n-dimensional

non-degenerate lottery X and any wealth level W , the following holds:

• EU ′(W +X)− U ′(W + S(X,W )) > 0

• EU ′(W +X −B(X,W ))− U ′(W ) > 0
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• EU ′(R(X) +X)− U ′(R(X)) > 0

• 0 < ∂B(X,W )
∂W < 1

Proof. From the definition of buying, selling price and the fact that they are

both increasing in wealth, it follows that:

∂S(X,W )

∂W
=

EU ′(W +X)− U ′(W + S(X,W ))

U ′(W + S(X,W ))
> 0

∂B(X,W )

∂W
=

EU ′(W +X −B(X,W ))− U ′(W )

EU ′(W +X −B(X,W ))
> 0

All of the properties above follow immediately.

Proposition 5.4. For two different utility functions U1 and U2, any wealth

levelW and any n-dimensional non-degenerate random variable X with bounded

values, I define corresponding selling and buying prices S1(W,X), B1(W,X)

and S2(W,X), B2(W,X). The following equivalence holds:

∀W ∀X : ∃ δ > 0 |xi| < δ ∀i ∈ {1, ..., n}

S1(W,X) > S2(W,X) ⇐⇒ B1(W,X) > B2(W,X)

Proposition 5.5. The following two statements are equivalent:

i. Bernoulli utility function exhibits CRRA

ii. buying and selling price for any lottery are homogeneous of degree one i.e.

S(λW,λX) = λS(X,W ), ∀λ > 0

B(λW,λX) = λB(X,W ), ∀λ > 0
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