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Abstract

Rabin and Thaler (2001) declared Expected Utility an ex-hypothesis

or a dead parrot alluding to the famous sketch from Monthy Pythons

Flying Circus. Following Cox and Sadiraj (2006) and others, one should

distinguish between Expected Utility (EU) theory (a purely mathematical

theory based on axioms) and Expected Utility models (EU theory plus a

given economic interpretation). The most prevalent EU model is one that

assumes consequentialism (Rubinstein, 2012). Consequentialism states

that the decision maker has a single binary preference relation comparing

probability distributions over final wealth levels. Preference relations over

wealth changes for different levels of wealth are derived from this single

preference relation. EU theory plus consequentialism is referred to as the

standard EU model. It is argued that most of the critique against EU is

against the standard EU model, or against consequentialism. We replace

consequentialism with reference-dependence, retaining the EU hypothe-

sis. Using Sugden (2003) framework, we show that many violations of the

standard EU model can be explained assuming this different intrerpreta-

tion. Among the topics considered are: WTA/WTP disparity, preference

reversal, complementary symmetry, preference homogeneity, loss aversion,

reflection effect and the coexistence of insurance and gambling.
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1 Introduction

Since 1738 Expected Utility (EU) hypothesis is an accepted paradigm of de-

cision making under risk, applied successfully in a wide spectrum of economic

analysis. Yet starting with Allais (1953) a bunch of contrary evidence against

the standard EU model accummulated, culminating with (Rabin and Thaler,

2001, p.230) who, alluding the famous sketch from Monthy Pythons Flying

Circus, stated: We feel much like the customer in the pet shop, beating away

a dead parrot. And also:(. . . ) it is time for economists to recognize that ex-

pected utility is an ex-hypothesis, so that we can concentrate our energies on

the important task of developing better descriptive models of choice under uncer-

tainty. The proponents of this view suggest replacing EU with Prospect Theory

(Kahneman and Tversky, 1979, Tversky and Kahneman, 1992, Schmidt et al.,

2008). Following another classic, I shall argue in the paper that the reports of

parrots death were an exaggeration. I now sketch the argument.

Following Cox and Sadiraj (2006) it is important to distinguish between EU

Theory (mathematical theory based on axioms) and an EU model (EU Theory

plus a specific interpretation). As argued by Rubinstein (2012), the prevailing

interpretation is that of consequentialism; it states that the decision maker with

initial wealth level W derives her risk preferences over wealth changes %W from

a single risk preference over final wealth levels % by taking: l1 %W l2 ⇐⇒
W + l1 % W + l2, where l1, l2 are two probability distributions over income –

extra money beyond my wealth. EU Theory combined with consequentialism

(or what Cox and Sadiraj (2006) call EU of terminal wealth model) is thus the

standard EU model.

The first important observation is that most of the available experimental

evidence, referred to as EU paradoxes, is evidence against the standard EU

model. For example consider Rabin paradox. It states that in the EU model:

1. if the DM rejects an equal chance of getting $110 or losing $100 at all

initial wealth levels,

2. then she must also reject an equal chance of getting an arbitrarily high

sum of money or losing $1000 at all initial wealth levels.

This is called a paradox because the premise that seems reasonable leads to a

conclusion that does not. Rabin (2000) attributes this implausible implication

to EU theory. However, it has been argued in a series of papers that this should

rather be attributed to consequentialism and not to EU theory (Rubinstein,
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2006, Cox and Sadiraj, 2006, Palacios-Huerta and Serrano, 2006, Foster and

Hart, 2009 and Lewandowski, 2014).

This leads to a second important observation, namely that at least some

of the evidence presented as contrary to EU is in fact evidence against the

consequentialist interpretation.

There are alternatives to consequentialism. Expected Utility may be com-

bined with mental accounting, such that the decision maker integrates his wealth

only within a certain budget (Lewandowski, 2014); for example the decision

maker may be EU maximizer within the restricted domain of his gambling

activity, for the purposes of which he designates part of his wealth, called a

gambling wealth. In the Rabin example above, if my gambling wealth is small

(say $150), it may be reasonable to reject the first gamble, because of the fear

to run out of (gambling) money. Another alternative to consequentialism is

range-dependence (Kontek and Lewandowski, 2016). The decision maker is an

EU maximizer only when evaluating lotteries having the same range of lottery

consequences (the interval between the lowest and the highest consequence in

the support of the lottery).

The most well-known alternative to consequentialism, however, is reference-

dependence, and this will also be the main focus of this paper. It generalizes

consequentialism by allowing the decision maker’s preferences over prospects

defined on wealth changes to be inconsistent with her preferences over prospects

defined over final wealth levels.

The general idea is to retain the EU hypothesis but to change the interpre-

tation of the standard EU model by replacing consequentialism (final wealth

interpretation) with reference-dependence (changes of wealth), where the refer-

ence point is assumed to be status quo and is allowed to be random. I demon-

strate that the resulting model, the Expected Utility of wealth changes model,

accommodates most of the known evidence against the standard EU model. In

particular I analyze the following: WTA/WTP disparity, preference reversal,

complementary symmetry, preference homogeneity, loss aversion, reflection ef-

fect and the coexistence of insurance and gambling. One notable exception that

cannot be accommodated by the model is the class of the Allais-type paradoxes;

they inherently require violation of independence, a key axiom in EU theory.

Referefence-dependence was first introduced in economics by Markowitz

(1952). Along with probability weighting, reference-dependence is adopted as

one of the two main tenets of Prospect Theory (Kahneman and Tversky, 1979,

Tversky and Kahneman, 1992, Schmidt et al., 2008), the most popular alter-
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native to the standard EU model. Since Prospect Theory accommodates most

of the known EU paradoxes, including the Allais-type paradoxes, what is then

the advantage of the model presented in this paper? The main advantage lies

in uncovering sources of violations. Probability weighting in any form departs

from EU theory as it necessarily involves violation of Independence. Reference-

dependence changes interpretation as compared to consequentialism, but does

not depart from EU theory. One contribution of this paper lies in showing

that most of the evidence against the standard model (except for the Allais-

type paradoxes) is in fact evidence against consequentialism and not against

EU theory. Moreover, by providing exact equivalence results, one can identify

sources of violation within the proposed reference-dependent EU model. For

example, it is shown that WTA-WTP disparity arises in this model solely from

loss aversion.

The model presented in this paper is closely based on the Reference-Depen-

dent Subjective Expected Utility (RDSEU) model of Sugden (2003). Unlike

previous reference-dependent models, the RDSEU model allows for a random

reference point. Based on this model Schmidt et al. (2008) proposed Third-

Generation Prospect Theory (TGPT). It assumes that gains and losses are

nominal differences between consequences in a given act and a reference act in

each state of the world. Under this assumption, TGPT generalizes the RDSEU

model by adding rank-dependent weighting of state probabilities. Hence many

properties of the model in this paper are inherited by a more general TGPT

version.

The model proposed in this paper departs from RDSEU (or TGPT) ap-

proach in one important aspect: it restricts attention to objective uncertainty

(exogenously given probabilites), thus simplifying the underlying formal model

considerably. The advantage of this assumption lies in providing a more parsi-

monious formal representation, which is both quite natural and easier to ma-

nipulate with.

This paper is organized as follows. Section 3 introduces the formal model

and some of its implications. Section 4 demonstrates how the model accommo-

dates some of the well-known experimental evidence contradicting the standard

EU model. Section 5 discusses the model and concludes.
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2 Main assumptions

As mentioned before a model that is to be applied to data consists of two

elements: a formal theory based on axioms, and an economic interpretation,

which bridges the gap between the theory and the real world. These two ele-

ments are sometimes heavily intertwined with each other. This is the case here

and therefore the formal model needs to be discussed along with the economic

interpretation.

The decisions that will be analyzed in this paper are that under objective

uncertainty (also referred to as risk). Thus probabilities are objectively given

and since I want to stick to the vNM axioms (EU theory), it implies that the

decision maker cares only about probability distributions over outcomes. This

is true, but the question remains what are the outcomes and the associated

probability distributions over outcomes. This question touches the issue of

interpretation.

The interpretation I want to impose is broadly that of reference-dependence.

But in any reference-dependent model the following issues need to be answered:

1. How are gains and losses defined?

(a) How is reference defined in a given choice situation?

(b) How are gains and losses defined given the reference?

2. How should gains and losses be evaluated:

(a) across themselves?

(b) among themselves?

I will answer these questions step-by-step, introducing the main assumptions

of the model.

Reference dependence is modeled as a special case of the RDSEU model of

Sugden (2003). This model is given in the context of subjective uncertainty.

It is assumed that acts are defined on final wealth levels, and a given act f is

evaluated relative to a reference act h by comparing consequences in the two

acts state-wise. This state-contingent notion of reference-dependence implies

that the DM takes into account stochastic dependence between f and h. Fur-

thermore, it is assumed that a reference act is allowed to be non-degenerate.

This feature is also present in TGPT, but was neither present in the original

version of prospect theory nor in the later cumulative version. It is furthermore

assumed that the reference act is a status quo wealth. By making a specific
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assumption regarding a reference act, the number of degrees of freedom is re-

duced, thus making the model more testable. On the other hand, the status

quo wealth is probably the most natural assumption to be made. Moreover,

under this assumption the model accommodates the well-known EU paradoxes

as will be shown in Section 4. I consider departures from this assumption only

in Section 6. The assumption of a (possibly random) status quo wealth being

the reference act makes it possible to model all possible kinds of exchanges.

One example is that of selling a risky prospect, which is present in the selling

price (or Willingness-To-Accept) elicitation task. Another example is exchang-

ing one risky prospect for another; one important caveat in this case is that it

requires the joint distribution of the two prospects to be specified – strength and

direction of dependence between prospects play an important role in assessing

profits from the exchange. These examples are analyzed in Section 3.1.

The assumption of a status quo reference point provides a clear answer to

question 1(a) stated above. I now turn to question 1(b). It is assumed that

gains and losses are defined by taking nominal differences between consequences

in a given act f and a reference act h in each state. In this way a new act

l defined on wealth changes relative to the status quo wealth is formed; we

refer to it as a prospect. This assumption is the same as the one made in

TGPT. This assumption abstracts from possible wealth effects as it ignores

what are the reference act consequences in absolute terms. It can be viewed as a

satisfactory approximation (Kahneman and Tversky, 1979, pp. 277–278). The

implications of this assumption are analyzed in Section 3.3. Since probabilities

are assumed to be objective, as soon as a prospect is defined, the state-space

needed to define it becomes redundant, as all that matters to the EU decision

maker is probability distribution over ouctomes (or the induced probability

distribution of prospect l). Thus a simplified formulation, which is referred to

as the EU of wealth changes model, is used that dispenses with state space.

Both formulations, the one that uses the state space and is needed to construct

reference-dependent prospect and the one which takes prospects as given and

evaluates them using the EU model, are introduced and examined formally in

Section 3.

I now turn to question 2. Question 2(a) touches on a very important issue

in any reference-dependent model, namely how the decision maker compares

losses with equivalent gains. It is a very robust empirical finding that people

usually exhibit loss aversion, meaning roughly that people generally dislike equal

chances to either win $x or lose the same amount, no matter what this amount
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is. We think it is clear that loss aversion and the tendency to isolate each risky

choice must both be key components of a good descriptive theory of risk attitudes.

(Rabin and Thaler, 2001, p.230) Loss aversion is also a natural thing to expect.

It is generally the case that richer people have more options to choose from.

Hence if I gain money I expand my possibilities; if I lose money, my possibilities

shrink (in real-life it may even lead to bankruptcy or prison). Even though it

is not explicitly assumed, I will focus on preferences exhibiting loss aversion.

Within these preferences I will focus on several classes of the utility functions

with differing risk-attitudes. Instead of assuming theses functional form right

away, they will arise as implications of more basic behavioral traits analyzed in

Section 4.

3 Formal model

I now introduce the setup of Sugden (2003). Let X ⊆ R be the set of con-

sequences, S finite set of states. All subsets of S, called events, are allowed.

A (Savage) act f : S → X is a random variable with finite support. The set

of all acts is denoted by F . A degenerate act is an act where f(s) = x, for

all s ∈ S, for some x ∈ X. The set of all degenerate acts is denoted by F d.

Depending on the context x denotes either a degenerate act or an element of

X. Probability measure on the full algebra on S is specified by a probability

function π : S → [0, 1], such that
∑

s∈S π(s) = 1.

I assume that preferences over acts are reference-dependent i.e. for all

f, g, h ∈ F , f %h g denotes f is weakly preferred to g viewed from h, the

reference act. Sugden (2003) proves the following representation result referred

to as the RDSEU model:

Theorem (RDSEU). A reference-dependent preference relation %r⊆ F ×F ×
F satisfies his eight axioms if and only if there exists a unique probability func-

tion π, and a relative value function v : X ×X → R that is strictly increasing

in the first argument and satisfies v(x, y) = 0, whenever x = y, is unique up

to a positive linear transformation (i.e. multiplication by a positive constant),

such that for all f, g, h ∈ F the following holds:

f %h g ⇐⇒
∑
s∈S

v(f(s), h(s))π(s) ≥
∑
s∈S

v(g(s), h(s))π(s) (1)

As stated in Section 2 the model analyzed here makes a number of assump-

tions. Probabilities are exogenously given, X represents final wealth levels and
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gains/losses in each state are defined as nominal differences in outcomes be-

tween a given act and a reference act. These assumptions make it possible to

simplify the above model.

Let ∆X denote the set of all possible differences in wealth levels x − y,

where x, y ∈ X. A prospect in the context of subjective uncertainty is an act

l : S → ∆X. The set of all prospects is ∆F . A typical element of the set

∆F will be denoted by l := (x1, E1; ...;xn, En), where Ei are the collections of

states for which l(s) = xi. The acts f, g, h are defined on final wealth levels. In

specific choice situations it will be convenient to assume that an act f defined

on the set of final wealth levels X can be decomposed into riskless initial wealth

W ∈ F d and an additional uncertain prospect l ∈ ∆F .

Alternatively, in the context of objective uncertainty, I will refer to prospects

as probability distribution on ∆X. The set of all such prospects is defined as:

L∆X := {pl : ∆X → [0, 1], |supp(pl)| <∞,
∑

x∈supp(pl)

pl(x) = 1}

A typical element of L∆X will be denoted as (x1, p1; ...;xn, pn), where pi =

pl(xi), pl is the induced probability distribution of l. Depending on the context

a prospect will either be an element of ∆F or an element from L∆X .

Define a vNM preference relation %⊆ L∆X ×L∆X . The following is a well-

known Expected Utility Theorem of von Neumann and Morgenstern (1944):

Theorem (EU). A preference relation %⊆ L∆X × L∆X satisfies the vNM

axioms if and only if there exists function u : ∆X → R, unique up to positive

affine transformation (i.e. up to addition of a constant and multiplication by a

positive constant), such that for any pl, pl′ ∈ L∆X , the following holds:

pl % pl′ ⇐⇒
∑

x∈supp(pl)

u(x)pl(x) ≥
∑

x∈supp(pl′ )

u(x)pl′(x) (2)

The proposition below demonstrates that under the assumptions made, one

can simplify the model in (1) by replacing it with the one in (2).

Proposition 3.1. The following two representations are equivalent:

1. The RDSEU representation given by (1) with the value function v(x, y) =

u(x − y) for all x, y ∈ X, where u : ∆X → R is a strictly increasing,

continuous function satisfying u(0) = 0.

2. the vNM representation given by (2), where l, l′ : S → ∆X, l(s) = f(s)−
h(s), l′(s) = g(s) − h(s), for all s ∈ S and pl, pl′ ∈ LDeltaX , s.t. pl(x) =∑

s:l(s)=x π(s), pl′(x) =
∑

s:l′(s)=x π(s), for x ∈ ∆X.
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Proof. The axioms of Sugden (2003) applied in the context of objective uncer-

tainty (risk) imply the vNM axioms. It remains to be shown that there is a

translation of objects in one representation into the corresponding objects in

another representation. That this is the case, can easily be checked. We refer to

pl, pl′ as to the induced probability distributions of l and l′, respectively. Note

that pl(x) ≥ 0, for all x ∈ ∆X and
∑

x∈∆X pl(x) = 1.

3.1 Choice and pricing in the EU of wealth changes model

Assume that the reference act h is current wealth level. Table 1 presents several

typical choice problems and the way they are handled by the model.

Problem

description
h f g Interpretation

a) Accept or

reject prospect l
W W + l W

f : accept l,

g: reject l

b) Choose btw.

prospect l1 and l2
W W + l1 W + l2

f : accept l1,

g: accept l2

c) Exchange

prospect l1 for l2
W + l1 W + l2 W + l1

f : exchange,

g: do not exchange

d) Buying price

B elicitation
W W + l −B W

f : buy prospect l,

g: do not buy

e) Selling price S

elicitation
W + l W + S W + l

f : sell prospect l,

g: do not sell

Table 1: Typical choice situations in the wealth-changes model.

By proposition 3.1, such choice and valuation decisions can be represented

by the following conditions:

a) Accept prospect l: Eu(l) ≥ 0

b) Choose prospect l1 over prospect l2: Eu(l1) ≥ Eu(l2)

c) Exchange prospect l1 for l2: Eu(l2 − l1) ≥ 0

d) Buying price elicitation: Eu(l −B) = 0

e) Selling price elicitation: Eu(S − l) = 0

Buying price B ≡WTP(l), also known as Willingness-To-Pay, is the maxi-

mal sure amount the decision maker is willing to pay for the right to prospect
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l. Selling price S ≡WTA(l), also known as Willingness-To-Accept, is the min-

imal sure amount the decision maker is willing to accept to forego the rights to

prospect l. These two concepts were introduced by Luce and Raiffa (1957).

Connection to regret theory

Note that the reference act h has to be the same when evaluating acts f and g.

Thus it is impossible in the current setup to analyze the reference act that is de-

pendent on the act being evaluated. One important example of such dependence

is a simplified model of regret Bell, 1982,Loomes and Sugden, 1982). Regret of

choosing alternative a1 over a2 is measured in general as v(u(a1)−u(a2)), where

v is the regret function and u(a) the utility of a consequence a. Suppose, how-

ever, that the formula is simplified to v(a1−a2), and v = u. In this case one can

think of the regret model as a reference-dependent model with gains and losses

defined the same way as in the EU of wealth changes model with one important

caveat: whenever acts f and g are compared, g is a reference act for f , and

f is a reference act for g. This motivates the definition of the regret-balanced

measure of a prospect. Suppose that C is a degenerate prospect, h = W a

degenerate act and l any prospect. Let f = W + l − C, g = W − l + C. Then

C is called a regret-balanced measure of l if it satisfies the following:

Eu(l − C) = Eu(C − l)

One can think of it in the following way: I can either accept prospect l or take a

sure amount of money C. If I accept the prospect, the foregone sure amount C

is my reference. If I take the amount C, the foregone prospect l is my reference.

The amount C can be interpreted as the amount for which the expected regret

when I choose prospect l is equal to the expected regret when I choose the sure

amount C. Thus C is a regret-balanced measure of l. Even though the regret-

balanced measure of l cannot be defined in the current model, because it would

require a different preference foundation, it is treated as a useful benchmark

and the way to compare the regret and the reference-dependent approaches.

3.2 Loss aversion utility functions

In this section I introduce a couple of utility functions classes that exhibit loss

aversion. These classes will later arise in results concerning EU paradoxes.

The general definition of loss aversion (Kahneman and Tversky, 1979) is the

following:
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Definition 1. The decision maker exhibits loss aversion if the utility function

u(·) representing his preferences satisfies: u(x) < −u(−x), for all x ∈ ∆X\{0}.

Lemma 1. u(x) < −u(−x) holds for x > 0 if and only if the same holds for

x < 0.

Proof. Let x > 0 and y = −x. Then u(x) < −u(−x) if and only if u(−y) <

−u(y) or u(y) < −u(−y). Since x was an arbitrary positive number the proof

is finished.

The following are possible functional forms of the reference-dependent utility

function u : ∆X → R that will arise in the results of Section 4. From now on

I assume that x ∈ ∆X and the loss aversion parameter λ, whenever present, is

strictly positive.

A1. General reflected utility function:

u(x) =

{
ū(x) if x ≥ 0,

−λū(−x) if x < 0.
(3)

A function ū(·) is continuous and strictly increasing with ū(0) = 0.

A2. Reflected homogeneous utility function:

u(x) =

{
xα x ≥ 0,

−λ(−x)α x < 0,
where α > 0 (4)

A3. Concave utility function: u is strictly increasing and concave over ∆X

and u(0) = 0

A4. Simple loss aversion utility function:

u(x) =

{
x if x ≥ 0

λx if x < 0
(5)

The exemplary graphs of these functions are provided in Figure 3.2.

3.3 Gains and losses – implications of the definition

I now proceed to discussing implications of the way gains and losses are defined

in the model. The following propositions establish three invariance results.

The first one determines the type of reference changes under which arbitrary

preferences remain invariant in the model.
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ConcaveGeneral
reflected

Reflected
homogeneous

Simple loss aversion

Reflected Simple loss aversion Concave

no loss aversion

loss aversion

no loss aversion

loss aversion

loss aversion

Figure 1: Different classes of utility functions.

Proposition 3.2. For any acts f, g, h, h′ ∈ F , the following holds: f %h g if

and only if f + h′ − h %h′ g + h′ − h.

Proof. Follows from the fact that the utility function is defined on the difference

between two acts – when this difference stays unchanged, the preference is also

unchanged.

The above result can be translated easily into practical implications. For

example consider the selling price elicitation task. Suppose that instead of

h = W + l a reference act is set to be h′ = W . Then, in order to obtain the

same selling price one needs to set f ′ = W − l + S instead of f = W + S, and

g′ = W instead of g = W + l. This implies that the following two elicitation

procedures are equivalent in the EU of wealth changes model:

a) The decision maker owns the right to play prospect l. He is asked what

is the minimal sure amount for which he would be willing to forego this

right.

b) The decision maker does not own the right to play prospect l. He is asked

what is the minimal sure amount for which he would be willing to take a

short position on this prospect l.

The other two invariance results presented in this section take the opposite

approach: they determine preferences within the model that are invariant to

changing a reference act: one concerns an arbitrary reference act and the other

a nondegenerate reference act.
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Proposition 3.3. The following two conditions are equivalent:

i. For any two distinct degenerate acts h, h′, f %h g ⇐⇒ f %h′ g,∀f, g ∈
F .

ii. The utility function u exhibits CARA.

Proof. Condition i. can be written in terms of the model as:

Eu(f ′) ≥ Eu(g′) ⇐⇒ Eu(f ′ + h′′) ≥ Eu(g′ + h′′)

where f ′ = f−h, g′ = g−h are any acts and h′′ = h−h′ is a nonzero degenerate

act. By Pratt (1964) theorem this holds if and only if the utility function u

exhibits constant absolute risk aversion.

Combined with Proposition 3.2, the above result implies that shifting acts

being compared (i.e. f and g) by the same constant and/or shifting the reference

act by a (possibly different) constant does not change preferences if and only if

u belongs to a CARA class.

Proposition 3.4. The following two conditions are equivalent:

i. For any two distinct acts h, h′, f %h g ⇐⇒ f %h′ g,∀f, g ∈ F .

ii. The utility function u exhibits risk neutrality.

Proof. The utility function u exhibits risk neutrality if and only if it is of the

form u(x) = ax + b, where a, b ∈ R, a > 0. If utility function is of this

form obviously condition i. holds. For the opposite direction take any acts

f, g ∈ F , and h = 0 h′ = f . By condition i. Efu(f) ≥ Egu(g) is equivalent

to 0 ≥ Ef,gu(g − f), where Ef ,Eg,Ef,g denote the expectation’s operator with

respect to the distribution of f , of g and teh joint distribution of f and g,

respectively. This in turn is equivalent to Ef,g[u(f−g)−u(f)+u(g)] = 0. Since

this holds for any f, g ∈ F , it must be equivalent to u(x− y) = u(x)− u(y) for

any x, y ∈ R. This in turn is the famous Cauchy functional equation for which

the only solution is u(x) = ax + b, where x ∈ R, a, b ∈ R. Since u is strictly

increasing we have a > 0.

The above proposition clarifies that within the model invariance towards

an arbitrary act is equivalent to risk neutrality. It implies that except for

risk-neutral preferences, reference dependence is always present if the reference

wealth is allowed to be random.
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3.4 Properties of WTA-WTP measures

We now state several properties of WTA and WTP which will be useful later

on.

We begin by stating some general properties of WTA, WTP and the regret-

balanced measure C.

Property 1. Willingness-to-pay and willingness-to-accept for a prospect l ∈
∆F with the support equal to [x, x], x, x ∈ ∆X, x < x are in the interior of the

support of this prospect, i.e.

WTA(l), C(l), WTP(l) ∈ (x, x)

Proof. Straightforward from definition.

Property 2. Given a prospect l ∈ ∆F and a constant c ∈ R such that l + c ∈
∆F , the following holds:

WTX(l + c) = WTX(l) + c where X ∈ {A,P}.

Proof. We prove it for WTP. Directly from definition:

0 = Eu(l −WTP(l))

= Eu(l + c− (WTP(l)) + c)

= Eu((l + c)−WTP(l + c))

Similarly for WTA.

This property tells us that shifting all the outcomes of a prospect by a

constant should change the measures exactly by this constant.

Property 3. Given prospects l,−l ∈ ∆F , the following holds:

WTX(l) = −WTY(−l) where X,Y ∈ {A,P} and X 6= Y.

Proof. We prove it for WTA(l). Directly from definition:

0 = Eu(WTA(l)− l)

= Eu(−l − (−WTA(l)))

= Eu((−l)−WTP(−l))

Similarly for WTP(l).

Suppose that l is a gain prospect, i.e.
∑

x≥0 pl(x) = 1. Then −l is a loss

prospects, i.e.
∑

x≤0 p−l(x) = 1. The above property implies that the negative

of what I am willing to pay for a given gain equals what I am willing to accept

for the loss of the same magnitude.
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Complementary symmetry

Complementary symmetry was first analyzed by Birnbaum and Zimmermann

(1998) and then by (Birnbaum et al., 2016).

Let l := (y, p;x, 1− p) and l′ := (y, 1− p;x, p) be two prospects in ∆F . We

say that complementary symmetry holds if WTP(l) + WTA(l′) = x+ y.

Proposition 3.5. Complementary symmetry holds in RDSEU for any utility

function.

Proof. Define θ(p) = −1−p
p and assume that B = WTP(l) and S = WTA(l′).

Then it is straightforward to show that:

u(y −B)

u(x−B)
=
u(S − x)

u(S − y)
= θ(p)

Suppose that complementary symmetry does not hold. There are two cases to

consider:

a) x + y > S + B: then since u is strictly increasing, the nominator on the

LHS of the above expression is strictly higher than the nominator on the

RHS. Equality will hold only if the same holds for the denominators, i.e.

B − x > y − S, thus contradicting the assumption.

b) x+ y < S +B: by a similar argument, we get contradiction as well.

Hence it must be that x+ y = B + S.

4 Paradoxes

4.1 WTA-WTP disparity and loss aversion

WTA-WTP disparity was first documented by Knetsch and Sinden (1984).

Proposition 4.1. The decision maker whose preferences are represented by the

utility function u(·) exhibits loss aversion if and only if given any nondegenerate

prospect l ∈ ∆F , the following holds: WTA(l) > C(l) > WTP(l).

Proof. (⇒): Denote C ≡ C(l). Note that if C = x then u(x−C) = −u(C−x),

and for C 6= x u(x − C) < −u(C − x) by loss aversion and Lemma 1. Since

prospect l is nondegenerate, there are consequences x in the support of l, such

that C 6= x. Hence we have:

2Eu(l − C) < Eu(l − C)− Eu(C − l) < −2Eu(C − l)
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By definition of C the middle term is equal to zero, so we have:

Eu(l − C) < 0 = Eu(l −WTP(l))

Eu(C − l) < 0 = Eu(WTA(l)− l)

By strict monotonicity of u we thus obtain that WTA(l) > C(l) > WTP(l).

(⇐): This part will be proven by contradiction. Suppose that the decision

maker does not exhibit loss aversion, i.e.

∃x∗ 6= 0 : u(x∗) ≥ −u(−x∗). (6)

Given the same utility function u construct prospect l = (x, p;x, 1 − p), such

that x∗ = x − C = C − x, where C ≡ C(l). This implies that C(l) = x+x
2 .

It is always possible to construct such prospect since u is strictly increasing

and continuous. Using the definition of WTP(l) and WTA(l) and Lemma 1 we

have:

2Eu(l − C) ≥ Eu(l − C)− Eu(C − l) ≥ −2Eu(C − l)

A similar argument as in the ⇒ part shows then that WTP(l) ≥ C(l) ≥
WTA(l), which contradicts the claim.

The above proposition is quite general. I will focus on two special cases.

Consider the utility function General Reflected (i.e. of the form specified in (3).

This utility function exhibits loss aversion if an only if λ > 0.

Corollary 1. For a nondegenerate prospect l ∈ ∆F and the general reflected

utility function given by (3) the following holds:

λ > 1 ⇐⇒ WTA(l) > C(l) > WTP(l)

Proof. Directly from Proposition 4.1.

The above corollary shows that in prospect theory, a willingness to ac-

cept/willingness to pay disparity may be explained solely by loss aversion.

Another special case of a loss aversion utility function is a Concave utility

function, specified in A3. in Section 1. For this class of functions an even

stronger condition holds:

Proposition 4.2. For a nondegenerate prospect l ∈ ∆F , given the utility func-

tion that is strictly increasing and bounded with u(0) = 0, the following holds:

u(·) is strictly concave ⇐⇒ WTA(l) > E[l] > WTP(l)

16



Proof. By strict Jensen’s inequality:

0 = Eu(l −WTP(l)) < u(E[l]−WTP(l))

0 = Eu(WTA(l)− l) < u(WTA(l)− E[l])

Since u(0) = 0 and u is strictly increasing, the conclusion follows.

One special case of the General Reflected utility function given by (3) which

is simultaneously overall concave (but not strictly concave) is when there is only

loss aversion and otherwise no additional curvature. This is the function of the

form Simple Loss Aversion given in (5). The following corollary to Proposition

4.2 applies to this class of utility functions:

Corollary 2. For a nondegenerate prospect l ∈ ∆F and the simple loss aversion

utility function given by (5) the following holds:

λ > 1 ⇐⇒ WTA(l) > E[l] > WTP(l)

Proof. Proposition 4.2 concerns a strictly concave utility function, whereas this

utility function is only weakly concave. It is however straightforward to observe

that in the WTA/WTP calculation a kinked area of the utility function (5) must

be used and hence the conclusion must be the same.

The conclusion of this section is that the gap between WTA and WTP

in the case of preferences defined over wealth changes may be explained by

loss aversion. This requirement defines a wide class of utility functions and in

particular, an S shaped utility function with loss aversion as well as a traditional

overall concave utility function over the whole real line.

4.2 Preference homogeneity

Tversky and Kahneman (1992) postulate that the CPT preferences are ho-

mogeneous, which means that multiplying the outcomes of a prospect l by a

constant k > 0 multiplies its cash equivalent by the same constant. They claim

(but without providing a proof) that preference homogeneity in the CPT model

is both necessary and sufficient to represent their value function as:

u(x) =

{
xα x ≥ 0

−λ(−x)β x < 0.
. (7)

where α, β > 0.

In what follows we assume that the cash equivalent of a prospect is defined as

the Willingness-To-Accept of this prospect, but a similar result holds for other
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possible definitions of a cash equivalent. The following proposition establishes

that in the RDSEU model (and in the CPT as well) preference homogeneity

holds if and only if the utility function takes the form of (4), i.e. the special

case of the function (7) where α equals β, such that there is the same level of

curvature (but with the opposite sign) for gains and for losses. This result thus

casts doubts on the claim made by Tversky and Kahneman (1992).

Definition 2. Preference homogeneity holds if and only if for any prospect

l ∈ ∆F , WTA(kl) = kWTA(l), for all k > 0.

Proposition 4.3. Preference homogeneity holds if and only if the utility func-

tion is reflected homogeneous given by (4).

Proof. It is easy to verify that if the utility function is given by 4, then prefer-

ence homogeneity holds. Let us focus now on the opposite direction. For any

prospect l ∈ ∆F and scalar k > 0, the Willingness-To-Accept of prospect kl is

defined as follows:

Eu(WTA(kl)− kl) = 0 (8)

Preference homogeneity holds if and only if u is a strictly increasing and con-

tinuous function satisfying:

u(kx) = φ(k)u(x), k > 0, x, kx ∈ R (9)

where φ is also a strictly increasing and continuous function defined on (0,∞).

In what follows we will solve this functional equation which belongs to the class

of Pexider equations.

When x = 0, it follows from the equation that u(0) = 0. When k = 1, we

obtain φ(1) = 1, and when x = 1, we obtain u(k) = u(1)φ(k), for k > 0. Define

a := u(1) and t(x) = u(x)/a, for x ∈ R. We can now rewrite (9) as:

t(kx) = t(k)t(x), k > 0, x,∈ R (10)

We will now consider two cases.

a) First suppose that x > 0. Define k′ = logb(k), x′ = logb(x), where

x, k, b > 0 and take logarithms base b on both sides of equation (10). We

obtain:

logb t
(
bk
′+x′
)

= logb t
(
bk
′
)

+ logb t
(
bx
′
)
, k′, x′ ∈ R

Define s(x) = logb t (bx), for x ∈ R. The equation above becomes:

s(k′ + x′) = s(k′) + s(x′), k′, x′ ∈ R
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This is Cauchy equation and the only continuous and strictly increasing

function satisfying it is s(x) = αx, α > 0, x ∈ R. Using the definition of

s and substituting x = bx
′

we obtain s(x′) = logb t
(
bx
′
)

= αx′, x′ ∈ R or

t(x) = xα, for x > 0. Finally we substitute back t(x) = φ(x) = u(x)/a to

get:

u(x) = axα, x > 0

φ(k) = kα, k > 0.

b) Now suppose that x < 0. Define k′ = logc(k), x′ = logc(−x), where

c, k,−x > 0 and take logarithms base c on the negative of both sides of

equation (10) to obtain:

logc

[
−t
(
ck
′+x′
)]

= logc t
(
ck
′
)

+ logc

[
−t
(
cx
′
)]
, k′, x′ ∈ R

Define s(x) = logc [−t (cx)] and r(x) = logc t (cx) and subtitute back into

the equation:

s(k′ + x′) = r(k′) + s(x′), k′, x′ ∈ R

This is one of the standard Pexider equations and the only continuous

and strictly increasing functions that satisfy this equation are:

s(x) = βx+ γ

r(x) = βx

where β > 0, and γ ∈ R. Using the definition of s and substituting −x =

cx
′
, we obtain logc

[
−t
(
−cx′

)]
= βx′+γ, for x′ ∈ R or t(x) = −(−x)βcγ ,

for x < 0. Similarly, using the definition of r and substituting k = ck
′
, we

obtain logc

[
t(ck

′
)
]

= βk′, for k′ ∈ R or t(k) = kβ, for k > 0. Finally we

substitute back t(x) = φ(x) = u(x)/a, to obtain:

u(x) = −acγ(−x)β, x < 0

φ(k) = kβ, k > 0.

Now to ensure preference homogeneity the exponents in functions phi in both

cases a) and b) have to be equal. which means that α = β. Let us also normalize

the utility function by dividing the utility for gains and the utility for losses by

a common number a. In order to ensure continuity of u defined over the whole

real line we need to have u(0) = 0. Define λ = cγ and we finally conclude that

the utility function takes the form specified by (4).
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4.3 Preference reversal for concave utility functions

Preference reversal was first analyzed by psychologists ( Lichtenstein and Slovic,

1971, Lindman, 1971 and Lichtenstein and Slovic, 1973). Later it was further

investigated by economists (Grether and Plott, 1979).

First, recall that traditional preference reversal is not possible within ex-

pected utility when preferences are defined over wealth levels, irrespective of

whether these wealth levels are interpreted narrowly as levels of gambling

wealth, for instance, or whether they are interpreted traditionally as total

wealth levels. On the other hand, when preferences are defined over wealth

changes, it turns out that traditional preference reversal is possible. Schmidt

et al. (2008) shows that preference reversal may occur in third generation

prospect theory. They calibrate for which values of parameters a version of

parametrized prospect theory is compatible with preference reversal. Below I

will demonstrate how preference reversal may be obtained as a generic element.

Let lP ≡ (x, p; 0, 1 − p) and l$ ≡ (y, q; 0, 1 − q) be two binary prospects in

∆F such that y > x > 0 and 1 > p > q > 0. prospect lP will be called the P-bet

and prospect l$ will be called the $-bet. In what follows I want to demonstrate

that preference reversal is possible under quite general assumptions. For that I

need two lemmas:

Lemma 2 (Three strings lemma). Utility function u(·) is strictly concave if

and only if for a > b > c the following holds:

u(a)

a
<
u(b)

b
<
u(c)

c
. (11)

Proof. The result is standard.

TODO: Try to relax: strict concavity. We need a much weaker condition

Lemma 3. Suppose that px = qy. Given a utility function u : R → R that is

strictly increasing, continuous and bounded with u(0) = 0, the following holds:

u(·) is strictly concave ⇐⇒ WTA(l$) > WTA(lP )

Proof. Define S ≡ WTA(lP ) to save on notation. S satisfies the following

equation:

pu(S − x) + (1− p)u(S) = 0 (12)
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Using the three-strings lemma u(·) is strictly concave if and only if

qu(S − y) + (1− q)u(S) < q
S − y
S − x

u(S − x) + (1− q)u(S)

= u(S − x)

[
q
S − y
S − x

− p
]

+ (p− q)u(S)

= u(S − x)
qS − qy − pS + px

S − x
+ (p− q)u(S)

= S(p− q)
[
u(S)

S
− u(S − x)

S − x

]
< 0

where both inequalities follow from (11), the first equality from (12) and the

third equality from the fact that px = qy.

We now state the proposition.

Proposition 4.4. Suppose that px = qy. Preference reversal occurs if u(·) is

strictly concave.

Proof. Suppose that u(·) is strictly concave. Then WTA(l$) > WTA(lP ), by

Lemma 3. Since x < y, u(x)
x > u(y)

y , by the three strings lemma for a concave

function u(·). Hence the following holds:

Eu(lP ) = pu(x) > p
x

y
u(y) = qu(y) = Eu(l$)

So prospect lP or a P-bet is chosen over prospect l$ or a $-bet in a direct choice

and yet WTA(l$) > WTA(lP ) as required.

As a direct corollary to Proposition 4.4 we have the following result:

Corollary 3. For a simple loss aversion utility function given by 5, preference

reversal is possible if and only if λ > 1

Proof. By Lemma 3 if If px = qy, so that the decision maker is indifferent

between prospect lP and l$ in a direct choice, then

λ > 1 ⇐⇒ WTA(l$) > WTA(lP )

The rest follows directly from the proof of Proposition 4.4.

Concavity of a utility function is sufficient for preference reversal in the

above example. However it is not necessary. In particular, Schmidt et al.

(2008) show that preference reversal is possible with an S-shaped prospect util-

ity function, which is convex for losses. If one wants to obtain a possibility
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of preference reversal for specific prospects and not as a generic feature of the

model, then the following requirement, which is weaker than the overall con-

cavity of the utility function, may be imposed: For a given P-bet and a given

$-bet and utility function u(·), define S = WTA(lP ). Then:

u(S − y)

S − y
>
u(S − x)

S − x
>
u(S)

S

4.4 Reflection effect and loss aversion

Reflection effect was first analyzed by Kahneman and Tversky (1979).

Definition 3. Strong reflection holds if for any three acts f, g, h ∈ F , such that

f(s)− h(s) ≥ 0, g(s)− h(s) ≥ 0, for all s ∈ S the following holds:

f %h g ⇐⇒ −g %−h −f

In what follows we assume that if l ∈ ∆F then −l ∈ ∆F . Given f, h ∈ F ,

a prospect l ∈ ∆F , such that l(s) = f(s)− h(s), for s ∈ S shall be denoted by

f − h. Such a prospect is called a gain prospect if for all s ∈ S, l(s) ≥ 0. It is

called a loss prospect if for all s ∈ S, l(s) ≤ 0. If prospect l is neither a loss

prospect nor a gain prospect it is a mixed prospect. The associated probability

distributions, will be called, the gain prospect, the loss prospect and the mixed

prospect, respectively.

Proposition 4.5. Strong reflection holds if and only if u is of the general

reflected form:

u(x) =

{
ū(x), x ≥ 0

−λū(−x), x < 0
(13)

where ū is strictly increasing and continuous with ū(0) = 0 and λ > 0.

Proof. Let f, g, h ∈ F be as in the definition of the strong reflection effect. Let’s

define prospects l, l′,−l,−l′ ∈ ∆, such that l := f − h, l′ := g − h, −l := h− f ,

−l′ := h− g and their associated probability distributions pl and pl′ , p−l, p−l′ .

It follows that l, l′ are gain prospects and −l,−l′ are loss prospects. We assume

that there is a best and a worst gain prospect lb, lw, respectively, and that the

best and worst prospects among loss prospects are −lw and −lb, respectively.

For convenience we assume that lw = 0, such that we can immediately get

u(0) = 0. To simplify notation we shall denote p := pl, q := pl′ , −p := p−l,

−q := p−l′ and pb := plb , p
w := plw , −pb := p−lb and −pw := p−lw .
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(⇐): Let the utility function u be of the form specified by (3). Then

p % q ⇐⇒
∑
x∈X

p(x)ū(x) ≥
∑
x∈X

q(x)ū(x)

⇐⇒ −
∑
x∈X

q(x)λū(−(−x)) ≥ −
∑
x∈X

p(x)λū(−(−x))

⇐⇒ −q % −p

(⇒): Let ug : R+ → R+ be a strictly increasing and continuous func-

tion with ug(0) = 0 that represents the decision maker’s preferences for gain

prospects. Let αp ∈ [0, 1] be such that: p ∼ αppb+(1−αp)pw. Since ug is vNM

utility, it satisfies the EU property: ug(p) = αpu
g(pb) + (1− αp)ug(pw) so that

αp = ug(p)−ug(pw)
ug(pb)−ug(pw)

. Similarly define αq for prospect q. Let ul : R− → R− be a

utility function for losses. Since it is also a vNM utility function, there exists

β−p ∈ [0, 1] such that: −p ∼ β−p(−pw) + (1− β−p)(−pb). Similarly define β−q

for prospect −q. Using strong reflection and EU, we have:

αp ≥ αq ⇐⇒ p % q ⇐⇒ −q % −p ⇐⇒ β−q ≥ β−p

Hence it must be that β−p = 1− αp and β−q = 1− αq. So:

ul(−p) = β−pu
l(−pw) + (1− β−p)ul(−pb)

= (1− αp)ul(−pw) + αpu
l(−pb)

= (1− αp)[ul(−pw)− ul(−pb)] + ul(−pb)

=
ug(p)− ug(pw)

ug(pb)− ug(pw)
[ul(−pw)− ul(−pb)] + ul(−pb)

= −ul(−pw)−ul(−pb)
ug(pb)−ug(pw)

ug(p) + ul(−pb) + ug(pb)
ul(−pw)− ul(−pb)
ug(pb)− ug(pw)

It follows that we can write ul(−p) = −λug(p) + θ, where λ, θ ∈ R, λ > 0.

Since we require that the overall utility function u is continuous and satisfies

u(0) = 0 we must have θ = 0 and the proof is finished.

Note that the above result combined with loss aversion gives the standard

prospect theory utility function as in (3) with λ > 1.

Proposition 4.6. Loss aversion holds if and only if for all prospects l 6= 0 such

that l = −l, where l ∈ ∆F , the following holds: Eu(l) < 0.

Proof. (⇐): Let l := (x1, p1; ...;xn, pn), such that x1 < ... < xi < 0 ≤ xi+1 <

... < xn, l ∈ ∆F . Since l = −l, xk = −xn+1−k, pk = pn+1−k, for k = 1, 2, ..., i.
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If xi+1 > 0, then n = 2i. If xi+1 = 0, then n = 2i+1. By loss aversion we have:

Eu(l) =
∑
k≤i

pku(xk) +
∑
k≥i+1

pku(xk)

<
∑
k≤i

pk(xk)(−u(−xk)) +
∑
k≥i+1

pku(xk)

= −
∑
k≥i+1

pku(xk) +
∑
k≥i+1

pku(xk) = 0

(⇒): Suppose that ∃x∗ > 0 : u(x∗) ≥ −u(−x∗). Define l = (−x∗, 1
2 ;x∗, 1

2).

Then we have:

Eu(l) = 1
2u(−x∗) + 1

2u(x∗)

≥ −1
2u(x∗) + 1

2u(x∗) = 0

A contradiction

Observe that for prospects l such that l = −l, El = 0. By the fact that

Eu(l) < 0, CE(l) < El = 0. This shows that loss aversion is a special kind of

risk aversion. It might be a useful hint in decomposing risk attitudes and loss

attitudes.

5 Discussion

6 Dutch book arguments

Dutch books were analyzed by Yaari (1985).

Dual theory of choice under risk was introduced by Yaari (1987). The crucial

axiom of this theory is dual independence. Let l, l′, l′′ ∈ ∆F be three prospects

and α ∈ [0, 1]. Let pl,l′ : (∆X)2 → [0, 1] be the joint distribution of l and l′.

Define prospect αl + (1 − α)l′ ∈ ∆F such that pαl+(1−α)l′(αx + (1 − α)y) =

pl,l′(x, y), where (x, y) ∈ (∆X)2. In other words αl + (1 − α)l′ denotes the

usual sum of two random variables αl and (1− α)l′. It is different than in the

statement of vNM independence where the corresponding object is a probability

mixture. Let %∈ (∆F )2 be a preference relation for prospects. It satisfies dual

independence if l % l′ implies αl + (1− α)l′′ % αl′ + (1− α)l′′.

A Dutch book is a sequence of trades that when accepted leads to a sure

loss of money for the accepting party and a sure win for the proposing party. It

is a well established fact that if the decision maker violates any of the Expected

Utility axioms or any of the probability axioms, he is vulnerable to a Dutch
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book (see Yaari, 1985) Dutch Books numbered DB1, DB2 and DB3. Yaari

suggested that if the decision maker violates dual independence but does not

violate any of the Expected Utility and probability axioms, he is also vulnerable

to a special kind of Dutch book that he calls DB4. Let us analyze his argument

in greater detail. Suppose that the decision maker exhibits the following pattern

of preferences:

l � l′ and 1
2 l
′ � 1

2 l. (14)

Then a bookie may approach him and offer him the following deal:

1. Take l/2 and l′/2 free of charge.

2. Exchange l/2 for l′/2 and pay me a small positive amount ε1.

3. Note that you now own 2 halves of l′, which is the same as one l′. Exchange

it for l and pay me a small positive amount ε2.

4. Note that one l is the same as two halves of l. Exchange l/2 for l′/2 and

pay me a small positive amount ε3.

5. Note that you are back to where you were Step 1. except for having lost

ε1 + ε2 + ε3 along the way. Repeat steps 2.-4.

Usually one thinks of a sequence of prospects in the following way. At one

time period, a single prospect is offered and either accepted or rejected. Sub-

sequently, the prospect is realized, and in the next step another prospect is

offered. However, the way the sequence of trades above is constructed makes it

clear that we have to consider each successive step without the corresponding

prospects being realized. What is happening here is trading with prospects

themselves. Therefore we needed a framework in which we consider accepting

a given prospect while already possessing the right to play another prospect.

The situation is thus more complicated than usual because we have to consider

background risk, i.e. our initial position is allowed to be random.

We will now analyze Yaari argument in greater detail. We assume that

before any exchange has taken place, all the uncertainty is resolved so that the

decision maker’s initial wealth is certain W .

TODO: This should be analyzed together with point a) below

Let us first consider the Expected Utility of wealth model. For the Dutch book

to work we would need the following pattern of preferences:

W + l/2 + l′/2 �W + l �W + l′ �W + l/2 + l′/2
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And this is impossible as it implies a cycle excluded by transitivity.

Let us now consider the Expected Utility of wealth changes model. In this

model it is crucial first to specify a way to determine reference act h in any

choice situation. We will consider several possibilities.

a) Reference act h1 is each time the certain initial wealth W .

b) Reference act h2 is a common part to both alternative acts f and g

c) Reference act h3 is the current status quo wealth

Let us now examine Yaari’s Dutch book no. 4 under the above three scenarios.

Let h1, h2, h3 be three alternative reference acts as specified in a)-c) above and

in each step let f be a status quo act and g an alternative act for which f is

exchanged.

Steps h1 h2 h3 f g

1. W W W W W + l/2 + l′/2

2. W W + l′/2 W + l/2 + l′/2 W + l/2 + l′/2 W + l′

3. W W W + l′ W + l′ W + l

4. W W + l/2 W + l W + l W + l/2 + l′/2

Under the specified assumptions, the following conditions should hold in

each of the three scenarios in order for the Dutch book to work:

Steps h1 h2 h3

1. Eu(l/2 + l′/2) > 0 Eu(l/2 + l′/2) > 0 Eu(l/2 + l′/2) > 0

2. Eu(l′) > E(l/2 + l′/2) Eu(l′/2) > E(l/2) Eu(l′/2− l/2) > 0

3. Eu(l) > Eu(l′) Eu(l) > E(l′) Eu(l − l′) > 0

4. Eu(l/2 + l′/2) > Eu(l) Eu(l′/2) > E(l/2) Eu(l′/2− l/2) > 0

It is clear that the case a) does not allow DB no. 4 as it is in fact equivalent

to the Expected Utility of wealth model with zero initial wealth.

Let us focus on cases b) and c).

Proposition 6.1. If the reference act is chosen to be a common part to the

alternatives f and g, then Dutch book no. 4 is possible if and only if the utility

function u does not belong to the CRRA class.

Proof. That DB no. 4 is impossible under CRRA follows directly from a well-

known 1 characterization result on the CRRA class: The utility function ex-

1See Pratt (1964) as the original reference or Lewandowski (2013) for a consise treatment.
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hibits CRRA if and only if the following holds:

l � l′ ⇐⇒ λl � λl′, ∀λ > 0, ∀l, l′ ∈ ∆F

It is clear that under CRRA one cannot obtain (14).

If the utility function is not CRRA, then take any two nondegenerate lot-

teries l, l′ ∈ ∆F such that l ∼ l′. Then by the above characterization result

for CRRA, there must be λ > 0 such that λl � λl′. W.l.o.g. we assume that

λl ≺ λl′.

a) If it is true for λ = 1
2 , we find ε > 0 small enough such that shifting

probability mass from some element in the support of l upwards and

redefine the resulting new lottery as l will result in l � l′ and λl ≺ λl′. It

is always possible to find such ε by Continuity axiom of Expected Utility

and monotonicity wrt First Order Stochastic Dominance.

b) If it is true for λ 6= 1
2 , then ...

We will now give a simple example of a utility function which is not CRRA

and thus DB no. 4 works. Take a CARA utility function of the form: u(x) =

10− 10 exp−
1
10x, where x ∈ ∆X and two prospects

l := (8, 0.9; 0, 0.1), l′ := (20, 0.5; 0, 0.5).

Then the following holds: Eu(l) > Eu(l′) and Eu
(

1
2 l
′) > Eu (1

2 l
)
, which repre-

sents preference pattern given by (14).

Let us now analyze case c).

Proposition 6.2. If the reference act is chosen to be a current status quo act,

then Dutch book no. 4 is possible if and only if the utility function u is not

concave.

Proof. To prove the proposition we will use the following result:

Lemma 4. For a concave utility function x � 0 ⇒ −λx ≺ 0, for λ > 0 and

any x

First, let’s state two properties valid for any concave function u(·) such that

u(0) = 0:

• for λ ∈ (0, 1] the following holds λu(x) ≤ u(λx), for all x.
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• for any x, u(x) ≤ −u(−x).

The first property is a version of Jensen’s inequality whereas the second may

be easily verified. Using these two properties, we establish the following rela-

tionship, true for all concave functions:

λu(x) ≤ u(λx) ≤ −u(−λx) ≤ −λu(−x), ∀λ ∈ (0, 1],∀x (15)

Now suppose we take any x and λ ∈ (0, 1] such that the above statement is

true. Define y = λx and θ = 1
λ and divide the above sequence of inequalities

by λ. Notice that x and λ may be chosen so that y is anything. Notice further

that θ ∈ [1,+∞) since λ ∈ [0, 1). Hence we obtain the following relationship

valid for any concave function:

u(θy) ≤ θu(y) ≤ −θu(−y) ≤ −u(−θy), ∀θ ∈ [1,+∞), ∀y (16)

Having established the two relationships, we can proceed with the proof. Sup-

pose that x � 0. It follows that Eu(x) > 0. And by (15) it is true that:

Eu(−λx) ≤ −λEu(x) < 0, ∀λ ∈ (0, 1], ∀x

It follows therefore that −λx ≺ 0, for λ ∈ (0, 1]. By (16) it is true that:

−Eu(−λx) ≥ λEu(x) > 0, ∀λ ∈ [1,+∞), ∀x

It follows that Eu(−λx) < 0 and hence −λx ≺ 0 for λ ∈ [,+∞).

We have shown that x � 0 ⇒ −λx ≺ 0 for any x and for λ both in (0, 1] and

in [1,+∞). Hence it is true for all positive λ.

The above proposition makes it clear that if the utility function is concave,

it is not possible to have both x � 0 and −λx � 0 for λ > 0. It means that the

risk averse individual will never accept both short and long position on the same

gamble or a share thereof. For a convex utility function on the other hand such

a situation is possible. Consider for example a strictly convex utility function

and a gamble x = (−x, 1/2;x, 1/2). Since the utility function is strictly convex

we have that x � 0. Observe that x = −x so that −x � 0. The same will be

true of any multiple of −x, i.e. −λx � 0, for all λ > 0.

7 TGPT model

Now we present the PT3 model which departs not only from the consequential-

ist’s assumption but also from the EU hypothesis. Let the states be denoted
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by si and ordered according to the value of v(f(si), h(si)). Out of all the states

(|S| ≥ 2) let m+ ≥ 0 be the number of states for which v(f(si), h(si)) ≥ 0 (rela-

tive weak gain) andm− ≥ 0 be the number of states for which v(f(si), h(si)) < 0

( relative loss). Let the states with relative loss be indexed by −m−, ...,−1 and

let the states with relative gain be indexed by 1, ...,m+. Let the probabilities

π(si) be denoted by πi.

The PT3 introduces rank-dependent probability weighting and thus the

function V (f, h) representing the reference-dependent preference becomes:

V (f, h) =
∑
i

v(f(si), h(si))w(si; f, h) (17)

where w(si; f, g) is the (rank-dependent) decision weight assigned to si when

f is being viewed from h. With the indexing proposed above this weight is

calculated according to:

w(si; f, h) =

 w+
(∑

j≥i πj

)
− w+

(∑
j>i πj

)
, 1 ≤ i ≤ m+

w−
(∑

j≤i πj

)
− w−

(∑
j<i πj

)
, −m− ≤ i ≤ −1

(18)

with the convention that w+
(∑

j>m+ πj

)
= w−

(∑
j<m− πj

)
= 0.

The PT3 model encompasses other models as special cases. Cumulative

prospect Theory is obtained if v(f(si), h(si)) = u(f(si) − h(si)), where u is a

strictly increasing and continuous value function for which u(0) = 0 and the

reference act is a degenerate act h = fx. If w(si; f, g) = πi, then it reduces back

to the RDSEU model. If the reference act is the current wealth position then

we have the expected utility of income (or wealth changes) model (See Sadiraj,

Cox, 2006, or Palacios-Huerta, Serrano, 2006, Lewandowski, 2014).

Note that in the models given by (1) and (17), states of nature s are needed

only in order to define a joint distribution of f and h so that we can define

values of the function v. We can thus simplify the models as soon as we know

the joint distribution. For two acts f, h let pf,h : X2 → [0, 1] be the induced joint

probability distribution of f, h, such that pf,g(x, y) =
∑
{s∈S:f(s)=x,h(s)=y} π(s),

for all x, y ∈ X2. Given that we can simplify the model given by (1):

V (f, h) =
∑

(x,y)∈X2

v(x, y)pf,h(x, y) (19)

Let us denote by xi, yi the corresponding values of f and h and by πi the

probabilities pf,h(xi, yi). Order these triples increasingly according to the value

of v(xi, yi) and divide the indexes into the set 1, ...,m+ for which the value
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xi − yi is nonnegative and the set −m−, ...,−1 for which the value xi − yi is

negative. Then we can simplify the model given by (17) into:

V (f, h) =
∑
i

v(xi, yi)w(πi; f, h) (20)

where w(πi; f, h) is a probability weighting function defined in the same way as

(18) but with indexes i referring to the ordering of πi and xi, yi instead of the

ordering of states si given there.

30



References

Allais, M. (1953). Le comportement de l’homme rationnel devant le risque:

Critique des postulats et axiomes de l’ecole americaine. Econometrica 21 (4),

503–546.

Bell, D. E. (1982). Regret in decision making under uncertainty. Operations

research 30 (5), 961–981.

Birnbaum, M. H., S. Yeary, R. D. Luce, and L. Zhao (2016). Empirical eval-

uation of four models of buying and selling prices of gambles. Journal of

Mathematical Psychology .

Birnbaum, M. H. and J. M. Zimmermann (1998). Buying and selling prices

of investments: Configural weight model of interactions predicts violations

of joint independence. Organizational Behavior and Human Decision Pro-

cesses 74 (2), 145–187.

Cox, J. C. and V. Sadiraj (2006). Small-and large-stakes risk aversion: Impli-

cations of concavity calibration for decision theory. Games and Economic

Behavior 56 (1), 45–60.

Foster, D. P. and S. Hart (2009). An operational measure of riskiness. Journal

of Political Economy 117 (5), 785–814.

Grether, D. M. and C. R. Plott (1979). Economic theory of choice and the

preference reversal phenomenon. The American Economic Review 69 (4),

623–638.

Kahneman, D. and A. Tversky (1979). Prospect theory: An analysis of decision

under risk. Econometrica 47 (2), 263–292.

Knetsch, J. L. and J. A. Sinden (1984). Willingness to pay and compensation

demanded: Experimental evidence of an unexpected disparity in measures of

value. The Quarterly Journal of Economics, 507–521.

Kontek, K. and M. Lewandowski (2016). Range-dependent utility.

Lewandowski, M. (2013). Risk attitudes, buying and selling price for a lottery

and simple strategies. Central and Eastern European Journal of Economic

Modeling and Econometrics 5, 1–34.

31



Lewandowski, M. (2014). Buying and selling price for risky lotteries and ex-

pected utility theory with gambling wealth. Journal of Risk and Uncer-

tainty 48 (3), 253–283.

Lichtenstein, S. and P. Slovic (1971). Reversals of preference between bids and

choices in gambling decisions. Journal of experimental psychology 89 (1), 46.

Lichtenstein, S. and P. Slovic (1973). Response-induced reversals of preference

in gambling: An extended replication in las vegas. Journal of Experimental

Psychology 101 (1), 16.

Lindman, H. R. (1971). Inconsistent preferences among gambles. Journal of

Experimental Psychology 89 (2), 390.

Loomes, G. and R. Sugden (1982). Regret theory: An alternative theory of

rational choice under uncertainty. The economic journal 92 (368), 805–824.

Luce, R. D. and H. Raiffa (1957). Games and Decisions: Introduction and

Critical Survey. Courier Corporation.

Markowitz, H. (1952). The utility of wealth. The Journal of Political Econ-

omy 60 (2), 151–158.

Palacios-Huerta, I. and R. Serrano (2006). Rejecting small gambles under ex-

pected utility. Economics Letters 91 (2), 250–259.

Pratt, J. W. (1964). Risk aversion in the small and in the large. Economet-

rica 32 (1/2), 122–136.

Rabin, M. (2000). Risk aversion and expected-utility theory: A calibration

theorem. Econometrica 68 (5), 1281–1292.

Rabin, M. and R. Thaler (2001). Anomalies. risk aversion. Journal of Economic

Perspectives 15 (1), 219–232.

Rubinstein, A. (2006). Dilemmas of an economic theorist. Econometrica 74 (4),

865–883.

Rubinstein, A. (2012). Lecture notes in microeconomic theory: the economic

agent. Princeton University Press.

Schmidt, U., C. Starmer, and R. Sugden (2008). Third-generation prospect

theory. Journal of Risk and Uncertainty 36 (3), 203–223.

32



Sugden, R. (2003). Reference-dependent subjective expected utility. Journal of

economic theory 111 (2), 172–191.

Tversky, A. and D. Kahneman (1992). Advances in prospect theory: Cumu-

lative representation of uncertainty. Journal of Risk and uncertainty 5 (4),

297–323.

von Neumann, J. and O. Morgenstern (1944). Theory of games and economic

behavior. Princeton University Press.

Yaari, M. E. (1985). On the role of dutch books in the theory of choice under

risk. In D. P. Jacobs, E. Kalai, M. I. Kamien, and N. L. Schwartz (Eds.),

Frontiers of Research in Economic Theory: The Nancy L. Schwartz Memorial

Lectures, 1983-1997, pp. 33–46. Cambridge University Press.

Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica 55 (1),

95–115.

33


