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Abstract

We build upon Goeree and Holt [American Economic Review, 91 (5)

(2001), 1402-1422] and show that the departures from Nash Equilibrium

predictions observed in their experiment on static games of complete in-

formation can be explained by minimizing the maximum regret.
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1 Introduction

1.1 Motivating examples

Game theory predictions are sometimes counter-intuitive. Below, we give three

examples. First, consider the traveler’s dilemma game of Basu (1994). An

airline loses two identical suitcases that belong to two different travelers. The

airline worker talks to the travelers separately asking them to report the value

of their case between $2 and $100. If both tell the same amount, each gets this

amount. If one amount is smaller, then each of them will get this amount with

either a bonus or a malus: the traveler who chose the smaller amount will get

$2 extra; the other traveler will have to pay $2 penalty.

Intuitively, reporting a value that is a little bit below $100 seems a good

strategy in this game. This is so, because reporting high value gives you a

chance of receiving large payoff without risking much – compared to reporting

lower values the maximum possible loss is $4, i.e. the difference between getting

the bonus and getting the malus. Bidding a little below instead of exactly $100
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Figure 1: Asymmetric matching pennies

L R

T 7, 0 0, 1

B 0, 1 1, 0

Figure 2: Choose an effort games

Game A Game B

L R

T 2, 2 −3, 1

B 1,−3 1, 1

L R

T 5, 5 0, 1

B 1, 0 1, 1

avoids choosing a strictly dominant action. In striking contrast to that intuition,

the only profile of rationalizable actions is for both players to report the minimal

value of $2. Note that by playing a rationalizable action you can never receive

more than $4 payoff, whereas playing a little bit below $100 gives you a chance

of getting $100.

Consider the second example, an asymmetric matching pennies game whose

payoff table is given in Figure 1. The only Nash equilibrium of this game

is in mixed strategies:
(
1
2T + 1

2B, 18L+ 7
8R

)
. Note that as compared to the

symmetric matching pennies game (replace 7 with 1 in the above game), it is

only the column player who “reacts” to this asymmetry of payoffs by increasing

the probability of playing R. The row player did not adjust his strategy, even

though it is his payoffs that became asymmetric, and not those of his opponent.

This property of a mixed strategy equilibrium, in which the player’s strategy

is calculated based on the other player’s (and not his own) payoff also seems

counter-intuitive as compared to what we would expect people to play in this

game.

As the third example, consider two games of a “choose-an-effort” variety

whose payoff tables are given in Figure 2. In both these games there are: two

pure strategy equilibria (T,L) and (B,R), and one mixed strategy equilibrium:

(45T + 1
5B, 45L + 1

5R) in game A and (15T + 4
5B, 15L + 4

5R) in game B. Game

theory does not provide an answer which of the three equilibria will be played.

Except that the equilibrium (T,L) is Pareto efficient in both of these games

and so maybe it will be played more often. Yet, when trying to predict the play

between real people, we may argue as follows. In game A, playing T is risky as

compared to playing B (payoff is either 2 or −3 in the former case and 1 in the

latter). The same holds for a column player: playing L is risky as compared to
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playing R. So, intuitively, we expect more people to play (B,R) than (T,L).

On the other hand, in game B, playing T is not that risky as compared to

playing B (5 or 0 in the former case as compared to 1 in the latter). The same

for the column player: playing L is not that risky compared to R. Intuitively,

we expect more people to play (T,L) than (B,R) in this game.

Note that this intuition is in striking contrast with the mixed strategy equi-

librium which predicts exactly the opposite. It advises players to play T more

often than B in game A and B more often than T in game B.

1.2 Goal of the paper: the minmax regret hypothesis

The implicit assumption underlying the Nash Equilibrium (and rationalizabil-

ity) is that of common knowledge among the players of the rules of a game,

preferences of the players and the rationality of the players. Rationality of a

player is defined as consistency in pursuing his objective whereas the objec-

tive is assumed to be the maximization of the expected value of the player’s

own payoff, measured on some utility scale (Myerson, 1991, p. 2). Common

knowledge of a fact p among the players (Aumann, 1976) requires that every

statement of the form: ”(every player know that)k every player knows p” is

true, for k = 0, 1, 2, ...

In experiments testing game theory, rules of a game may be made common

knowledge. However, rationality of the players and their exact motives (prefer-

ences) is usually not a common knowledge. Players usually do not know each

other, they might be making mistakes, lose their focus or interest for a while,

be uncertain about other players’ motives, etc. Since Nash equilibrium is heav-

ily based on the assumption of common knowledge of rationality among the

players, we might observe departures from Nash equilibrium predictions. And

if so, what should we expect people to play and why? Even if players adhere to

a Nash equilibrium strategy, there are games with many equilibrium strategies.

What makes people choose one equilibrium strategy over another. Are they all

equally attractive? Or maybe there is something that makes one of them more

attractive or intuitive over another?

By departing from the assumption of common knowledge of rationality and

of other players’ preferences, an additional uncertainty arises - players become

less predictable in their behavior. In the extreme case when his opponent is

believed to be completely unpredictable, a player might treat a strategic two-

player game as a game against nature under conditions of complete ignorance.

In such a case the player might disregard his opponent’s payoffs, treat his
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Figure 3: Regret tables for choose an effort games

Game A Game B

L R max

T 0, 0 4, 1 4

B 1, 4 0, 0 1

max 4 1

L R max

T 0, 0 1, 4 1

B 4, 1 0, 0 4

max 1 4

strategies as states of nature and choose according to one of the rules of choice

under complete ignorance. We argue that, even though it is the extreme case,

it may help predicting how people actually play in experimental settings.

We postulate using the minmax regret decision rule of Savage (1951) to help

predicting departures from Nash Equilibrium. Among many decision rules of

choice under complete ignorance we chose the minmax regret rule for a num-

ber of reasons. First, unlike the Hurwicz criterion (Hurwicz, 1951) with the

pessimism coefficient α, it does not require eliciting any preference parame-

ters. Second, it is neither overly pessimistic as the Wald’s maxmin rule (Wald,

1950) nor overly optimistic as the maxmax rule. It also avoids the problem of

the Laplace’s principle of insufficient reason (Laplace, 1814) criticized for not

reflecting properly the idea of complete ignorance (uniform prior is not unin-

formative). Finally, in the context of a game the minmax regret rule does not

exhibit its main drawback. The rule generally violates independence of irrel-

evant alternatives (i.e. presence of an unwanted alternative might change the

choice), but in a game the choice alternatives are fixed, so the issue of choice

reversals due to adding or removing choice alternatives to the choice set does

not arise.

We now show that the minmax regret rule captures the intuition behind the

selection of strategies that we presented in the introduction. Consider games A

and B. Their regret tables are given in Figure 3. The minmax regret strategies

for both players are: B and R in the case of game A and T and L in the

case of game B. This is consistent with the intuition that was given in the

introduction. In general, we will argue that minmax regret captures well the

intuition provided while discussing the motivating examples.

The hypothesis we test is whether minmax regret and the intuition it cap-

tures helps predicting the actual play in simple static games of complete infor-

mation. In particular, we test whether players move towards strategies with low

minmax regret if the difference in regrets between strategies is large enough.

For this purpose we analyze experimental data obtained by Goeree and Holt
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(2001). They report data for a series of two-person games played once. For each

game they assume two payoff structures: the treasure treatment in which the

observed behavior agrees with the NE prediction, and the contradiction treat-

ment in which the behavior strikingly deviates from it. They analyze static and

dynamic games with complete and incomplete information. Here we restrict

attention only on their static games of complete information.

1.3 Related literature

Using minmax regret rule in the context of a game was originally proposed by

Luce and Raiffa as early as in 1957 in their classic book Games and decisions.

They state that in the context of a strategic interaction independence of irrel-

evant alternatives can be criticized because “adding a new act for the decision

maker can affect the strategic position of the adversary and therefore the deci-

sion maker should reappraise the relative merits of the old facts”. Hence they

postulate that the minmax regret criterion, “which was mainly criticized on

the basis of its non-independence of irrelevant alternatives, should be reevalu-

ated” (Luce and Raiffa, 1989, p. 307). Renou and Schlag (2010) take up this

challenge and propose the minmax regret equilibrium notion. While we share

their motivation that minmax regret captures the intuition of what happens

when we drop the assumption of mutual common knowledge of rationality, our

goal in this paper is different than theirs. They propose the equilibrium notion,

we suggest to use the rule to help predicting departures from Nash Equilibria.

Our use of the rule is non-strategic whereas they treat it as part of strategic

considerations.

2 Formal definitions and notation

Consider a game Γ in strategic form:

1. The set of players N

2. For each player i ∈ N a set of actions Ai

3. For each player i ∈ N a payoff function ui : A → R

Notation:

• A set of all players profiles of actions is denoted by A ≡ ×i∈NAi with a

typical element denoted by a.
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• A set of all players but player i profiles of actions is denoted by A−i ≡
×j∈N\i with a typical element denoted by a−i.

Definition 1. Nash equilibrium in pure strategies is a profile of actions a∗ ∈ A

such that:

a∗i ∈ arg max
ai∈Ai

ui(ai, a
∗
−i), ∀a−i ∈ A−i, ∀i ∈ N (1)

Definition 2. Given any strategic form game Γ, a randomized strategy for any

player i is a probability distribution over Ai. Let ∆(Ai) denote the set of all

possible randomized strategies for player i. The set of all randomized strategy

profiles will be denoted by ∆(A) = ×i∈N∆(Ai). It must be that:∑
ai∈Ai

σi(ai) = 1, ∀i ∈ N

We will write σ ≡ (σi)i∈N , where σi ≡ (σi(ai))ai∈Ai , for each i.

For any randomized strategy profile σ, let ui(σ) denote the expected payoff that

player i would get when the players independently choose their pure strategies

according to σ:

ui(σ) =
∑
a∈A

∏
j∈N

σj(aj)

ui(a), ∀i ∈ N

For any σ′
i ∈ ∆(Ai), we denote (σ′

i, σ−i) the randomized strategy profile in

which the i-th component is σ′
i and all other components are as in σ. Thus:

ui(σ
′
i, σ−i) =

∑
a∈A

 ∏
j∈N\i

σj(aj)

σ′
i(ai)ui(a)

Definition 3. A randomized strategy profile σ∗ ∈ ∆(A) is a Nash equilibrium

of Γ if the following holds:

σ∗
i ∈ arg max

σi∈∆(Ai)
ui(σi, σ

∗
−i), ∀i ∈ N (2)

Definition 4. The rationalizable set of actions (Bernheim, 1986, Pearce, 1984)

can be computed as follows:

1. Start with the full action set for each player.

2. Remove all actions which are never a best reply to any belief about the

opponents’ actions – no rational player will choose such actions.
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3. Remove all actions which are never a best reply to any belief about the

opponents’ remaining actions – no player who knows that the other players

are rational will choose such actions.

4. Continue the process until no further actions are eliminated.

5. In a game with finitely many actions, this process always terminates and

leaves a non-empty set of actions for each player.

Players respond optimally to some belief about their opponents’ actions, but

Nash equilibrium requires that these beliefs be correct while rationalizability

does not. The general idea is to provide the weakest constraints on players

while still requiring that players are rational and this rationality is common

knowledge among the players. We now define regret of a strategy

Definition 5. Regret of an action a′i ∈ Ai given a profile of other players’

actions a′−i ∈ A−i is defined as:

Ri(a
′
i, a

′
−i) = max

ai∈Ai

[ui(ai, a
′
−i)]− ui(a

′
i, a

′
−i) (3)

The maximum regret of a′i ∈ Ai is then given by:

max
a−i∈A−i

Ri(a
′
i, a−i) (4)

The minmax regret strategy for a player i ∈ N is an action a∗i ∈ Ai such that:

a∗i ∈ arg min
ai∈Ai

[
max

a−i∈A−i

Ri(ai, a−i)

]
(5)

3 Minmax regret strategies and treasures of game

theory

In this section we analyze those of the games from Goeree and Holt (2001) that

are static games of complete information.

3.1 Matching pennies

Consider three games of a ”matching pennies” variety – their payoff and regret

tables are given in Figure 4. The first game is symmetric whereas the other two

are asymmetric. Note that, as discussed in the introduction, since the column

player’s payoffs are the same in all three games, the row player’s equilibrium

strategy is the same in all three games. It sharply contrasts with the experimen-

tal evidence reported by Goeree and Holt (2001). In the asymmetric matching
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Figure 4: Matching pennies. In brackets: mixed Nash equilibrium in BLACK,

experimental data in RED.

Symmetric matching pennies Regret table

L (.50)/(.48) R

T (.50)/(.48) 80, 40 40, 80

B 40, 80 80, 40

L R max

T 0, 40 40, 0 40

B 40, 0 0, 40 40

max 40 40

Asymmetric matching pennies Regret table

L (.13)/(.16) R

T (.50)/(.96) 320, 40 40, 80

B 40, 80 80, 40

L R max

T 0, 40 40, 0 40

B 280, 0 0, 40 280

max 40 40

Reversed asymmetry Regret table

L (.91)/(.80) R

T (.50)/(.08) 44, 40 40, 80

B 40, 80 80, 40

L R max

T 0, 40 40, 0 40

B 4, 0 0, 40 4

max 40 40

pennies game in the middle panel people tend to choose strategy T twenty four

times more often than strategy B. In the reversed asymmetry game in the

bottom panel it is exactly the opposite: strategy B is played more than twelve

times more often than strategy T .

The data pattern is captured by the minmax regret rule. In the “asymmetric

matching pennies” game the maximum regret of strategy T is seven times lower

than that of strategy B whereas in the “reversed asymmetry” game it is the

opposite: the maximum regret of strategy T is ten times higher than that of

strategy B. Note also that as for the column player strategy, experimental data

is roughly consistent with the equilibrium prediction. It is also the case that

for the column player the maximum regret values of the two strategies are the

same.
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3.2 The traveller’s dilemma

Let us consider the travellers’ dilemma with two players and action space Ai =

{180, 181, ..., 300} for each i ∈ N = {1, 2}. Payoffs are the following:

ui(a
′
i, a

′
j) = min(a′i, a

′
j) + P (a′i, a

′
j), i 6= j, i, j ∈ N,

where P (a′i, a
′
j) =


P if a′i < a′j

0 if a′i = a′j

−P if a′i > a′j

, where P ∈ Z+

When P = 0 and for P = 1, any profile of strategies for which ai = aj , i 6= j

is a pure strategy Nash equilibrium. When P > 1, the only Nash equilibrium is

for every player to bid 180. It is also the unique profile of rationalizable actions

in this game. Experimental evidence shows that if P is equal to 180 almost

80% of all players report values in the lowest interval of 180 − 190. However,

if P is equal to 5, then almost 80% of all players report values in the highest

interval of 290− 300.

We now calculate the max regret of all the strategies in this game. Regret

of player i for a given strategy profile (a′i, a
′
j) ∈ A is equal to:

Ri(a
′
i, a

′
2) = max

ai∈Ai

(
min(ai, a

′
j) + P (ai, a

′
j)
)
−

(
min(a′i, a

′
j) + P (a′i, a

′
j)
)

We need to consider two cases:

a′j = 180 ⇒ Ri(a
′
i, 180) =

{
180− 180 = 0 if a′i = 180

180− 180 + P = P if a′i > 180

a′j > 180 ⇒ Ri(a
′
i, a

′
j) = a′j − 1 + P −

(
min(a′i, a

′
j) + P (a′i, a

′
j)
)

Let’s summarize it in the form of the table:

a′i = 180 a′i > 180

a′j = 180 0 P

a′j > 180 a′j − 181 a′j − 1 + P −min(a′i, a
′
j)− P (a′i, a

′
j)

So the maximum regret of player i for a given strategy a′i ∈ Ai is equal to:

max regreti(a
′
i) =


119 when a′i = 180

max(P, 118) when a′i = 181

max(2P − 1, 0) when a′i ≥ 182

Now we can solve for the minmax strategies in this game. They are summarized

in Table 1. For example, for P = 0, the only minmax regret strategy is to bid

300. For P = 5, any bid in the set {290, 291, ..., 300} is a minmax regret

strategy. For P = 180 the only minmax regret strategy is to bid 180.
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Table 1: Minmax regret strategies of the traveller’s dilemma as a function of P

Values of P Set of minmax regret strategies minmax value

P = 0 {300} 0

P ∈ {1, ..., 59} {300− 2P, ..., 299, 300} 2P − 1

P ∈ {60, 61, ..., 118} {181} 118

P = 119 {180, 181} 119

P ∈ {120, 121, ...} {180} 119

3.3 Choose an effort game

The strategy space is Ai = {110, 111, ..., 170}, i ∈ N = {1, 2}. The payoffs for

a given profile of actions (a′i, a
′
j) ∈ A are a function of a cost of effort parameter

c ∈ (0, 1):

ui(a
′
i, a

′
j) = min(a′i, a

′
j)− ca′i

The set of Nash equilibria consists of all the pairs (a, a), where a ∈ Ai. The

experimental evidence on the other hand suggests that if cost of effort is low

(c = 0.1), then people usually choose high effort whereas if cost of effort is high

(c = 0.9), then they choose low effort. Again this is not captured by the NE

prediction. Let’s calculate the riskiness of the strategies involved. The regret

of a given profile of actions (a′i, a
′
j) ∈ A is given by:

Ri(a
′
i, a

′
j) = max

ai∈Ai

(
min(ai, a

′
j)− cai

)
−
(
min(a′i, a

′
j)− ca′i

)
= a′j − ca′j −min(a′i, a

′
j) + ca′i

The maximum regret of a strategy a′i is given by:

max regreti(a
′
i) = max

aj∈Aj

(
aj − caj −min(a′i, aj) + ca′i

)
= max

(
170(1− c)− a′i,−110c

)
+ ca′i

The minmax regret is then:

min
ai∈Ai

[max (170(1− c)− ai,−110c) + cai]

Let’s define a∗i ∈ Ai as the value of player i strategy for which the two elements

of the above max function are equal:

170(1− c)− a∗i = −110c ⇒ a∗i = 170− c(170− 110)
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Figure 5: A coordination game with a secure outside option. In brackets: mixed

NE in BLACK, experimental data in RED

x = 0 L (.67) M (.33)/(.84) R

T 90, 90 0, 0 0, 40

B (.33)/(.96) 0, 0 180, 180 0, 40

x = 400 L (.67) M (.33)/(.76) R

T 90, 90 0, 0 400, 40

B (.33)/(.64) 0, 0 180, 180 0, 40

Regret table L M R max

T 0, 0 180, 90 0, 50 180

B 90, 180 0, 0 x, 140 max(90, x)

max 180 90 140

In order to find the minmax regret, it is clear that we need to consider three

cases:

a′i = 110 ⇒ max regreti(110) = (1− c)(170− 110)

a′i = a∗i ⇒ max regreti(a
∗
i ) = c(1− c)(170− 110)

a′i = 170 ⇒ max regreti(170) = c(170− 110)

Since c ∈ (0, 1) it must be that the minmax regret strategy is a′i = a∗i and the

minmax regret value is max regreti(a
∗
i ) = c(1 − c)(170 − 110). For example if

c = 0.1, the minmax regret strategy is equal to 164 and if c = 0.9, the minmax

regret strategy is equal to 116, which is in accordance with the experimental

evidence.

3.4 The extended coordination game

Figure 3.4 presents the payoffs, data as well as the minmax regret strategies of

the extended coordination game. Note that according to the evidence people

most frequently played (B,M) profile of strategies, i.e. the Pareto efficient (pure

strategy) Nash equilibrium. However, row players decreased their frequency

of playing B by 32% in the 400 treatment as compared to the 0 treatment.

This change is predicted by the minmax regret rule: B is the minmax regret

strategy in the 0 treatment and T becomes the minmax regret strategy in the

400 treatment.
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Figure 6: The Kreps game. In brackets: mixed NE in black, experimental data

in red.
L (.13)/(.26) M (.08) NN (.68) R (.87)/(.00)

T (.49)/(.68) 200, 50 0, 45 10, 30 20,−250

B (.51)/(.32) 0,−250 10,−100 30, 30 50, 40

Regret table L M NN R max

T 0, 0 10, 5 20, 20 30, 300 30

B 200, 290 0, 140 0, 10 0, 0 200

max 290 140 20 300

3.5 The Kreps game

Figure 3.5 presents the payoffs, data and the minmax regret strategies in the

so called Kreps game. Note that the strategy NN of the Column player is

not a best-response to any strategy of the Row player. Yet, it is played most

frequently. This may be explained by the fact, that all other strategies of the

column player are risky - their maximum regret ranges between 140−300. This

is not so for the strategy NN for which the max regret is minimal and equals

20.

4 Conclusion

We have analyzed static games of complete information from Goeree and Holt

(2001) and found that the deviations from Nash Equilibrium strategies observed

in their data may be explained by taking into account the strategies’ maximum

regret. The rationale behind this criterion stems from relaxing the assumption

of common knowledge of rationality. This introduces the uncertainty about the

opponents behavior that is well captured by the maximum regret.

Maximum regret should be seen as an auxiliary criterion based on which

people decide which strategy to choose, the first being the Nash equilibrium

strategy. It should not be treated as a binary criterion - the magnitude of

regret should also matter.

Future research should also analyze the second order minmax regret strat-

egy, i.e. the best response to the minmax regret strategy of the opponent.
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