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Outline

1. Inspired by Parducci (1964) we propose
range-dependent utility (RDU) as a general framework for
decisions under risk

I Simple modification of Expected Utility Theory in which utility
depends on the range of lottery outcomes

2. Based on TK 1992 experimental data we propose the
decision utility model (DU) as operational special case of
RDU used for prediction:

I The model is based on the hypothesis that preferences are
scale and shift invariant

3. Monotonicity wrt FOSD and continuity
I Necessary and sufficient conditions
I Examples



Eye-adaptation process

What we see in a dark room
Just after entering After 15 minutes

What an eye adapts to:

I Mean luminance level

I Or luminance range?

Two psychophysical theories:

I Adaptation-level theory (Helson 1963) ⇒ reference point
⇒ Prospect Theory

I Range-frequency theory (Parducci 1964) ⇒ range
⇒ Our model



TK (1992) data
p CE

No p CE 0 50 0.00 0
1 0 50 0.10 9.0 0 50 0.10 9.0
2 0 50 0.50 21.0 0 50 0.50 21.0
3 0 50 0.90 37.0 0 50 0.90 37.0
4 0 100 0.05 14.0 0 50 1.00 50.0
5 0 100 0.25 25.0
6 0 100 0.50 36.0
7 0 100 0.75 52.0
8 0 100 0.95 78.0
9 0 200 0.01 10.0
10 0 200 0.10 20.0
11 0 200 0.50 76.0 .
12 0 200 0.90 131.0
13 0 200 0.99 188.0 .
14 0 400 0.01 12.0
15 0 400 0.99 377.0 .
16 50 100 0.10 59.0
17 50 100 0.50 71.0
18 50 100 0.90 83.0
19 50 150 0.05 64.0
20 50 150 0.25 72.5
21 50 150 0.50 86.0
22 50 150 0.75 102.0 p CE
23 50 150 0.95 128.0 100 200 0.00 100.0
24 100 200 0.05 118.0 100 200 0.05 118.0
25 100 200 0.25 130.0 100 200 0.25 130.0
26 100 200 0.50 141.0 100 200 0.50 141.0
27 100 200 0.75 162.0 100 200 0.75 162.0
28 100 200 0.95 178.0 100 200 0.95 178.0

100 200 1.00 200.0

xl xu
xl xu

xl xu

I Fix lottery range [xl , xu]

I Assign u[xl ,xu ](xl) = 0 and
u[xl ,xu ](xu) = 1

I Following the vNM idea:
u[xl ,xu ](CE ) = p

I We fit a nonlinear function
u[xl ,xu ] : [xl , xu]→ [0, 1] with
two restrictions given above



Fitting range-dependent utility functions

I Conceptually
interesting

I Operationally
demanding:

I Eliciting
different
utility
funtions for
different
lottery
ranges



Fitting the decision utility function

I Observation
I Range-dependent utilities

differ mostly in stretch
and shift of lottery
consequences

I Normalize all lottery ranges
and consequences into a
common interval [0, 1]

I Define a single function
D : [0, 1]→ [0, 1], called the
decision utility function

I Fit the function with the
data



Setup

I X – set of monetary alternatives
I L – set of finite support lotteries P

I Ld – set of degenerate lotteries Px

I standard mixing operation:
(αP + (1− α)Q)(x) = αP(x) + (1− α)Q(x)

I lottery range Conv(suppP)
I Lc

[xl ,xu ] – set of lotteries comparable within range [xl , xu] is

the union of two sets:
I L[xl ,xu ] – set of lotteries with range equal to [xl , xu]
I Ld

[xl ,xu ] – set of degenerate lotteries with support in [xl , xu]



Axioms

A ”range-dependent” preference relation %⊂ L× L satisfies the
following axioms:

Axiom (1)

Weak Order: % is complete and transitive.

Axiom (2)

Within-Range Continuity: For any interval [xl , xu] ⊂ X , xl < xu
and for every Q ∈ Lc

[xl ,xu ] the following holds:

Pxu � Q � Pxl =⇒
∃α, β ∈ (0, 1) : αPxu + (1− α)Pxl � Q � βPxu + (1− β)Pxl .



Axioms

Axiom (3)

Within-Range Independence: For any interval [xl , xu] ⊂ X ,
xl < xu, for every P,Q,R ∈ L, such that
αP + (1− α)R, αQ + (1− α)R ∈ Lc

[xl ,xu ], for all α ∈ (0, 1] the
following holds:

P % Q ⇐⇒ αP + (1− α)R % αQ + (1− α)R, ∀α ∈ [0, 1].

Axiom (4)

Monotonicity: For all x , y ∈ X the following holds:

x > y ⇐⇒ Px � Py



Discussion on axioms

Monotonicity means ”more is better”. Continuity and
Independence required to hold only for lotteries comparable within
the same range.
Within-Range Continuity: allows violations of continuity when
lottery ranges differ
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Discussion on axioms

Within-Range Independence: allows violations of independence
when lottery ranges differ.
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Range-dependent utility representation

Theorem (Range-dependent utility)

A preference relation %⊂ L× L satisfies axioms A1–A4 if and only
if for every interval [xl , xu] ⊂ X , xl < xu there exists a unique
strictly increasing and surjective function u[xl ,xu ] : [xl , xu]→ [0, 1],
such that for every pair of lotteries P,Q ∈ L the following holds:

P % Q ⇐⇒ CE(P) ≥ CE(Q), (1)

where the certainty equivalent is defined as:

a) CE(P) = u−1
Rng(P)

[∑
x∈X P(x)uRng(P)(x)

]
for any

P ∈ L \ Ld ,

b) CE(Px) = x , x ∈ X for any Px ∈ Ld .



The proof main idea

I Construct a strictly increasing and surjective mapping
u[xl ,xu ] : [xl , xu]→ [0, 1].

I The inverse u−1
[xl ,xu ] : [0, 1]→ [xl , xu] exists

I So CE values are well defined

I Lotteries are compared on a monetary scale

Intuition:

I The same consequence might be assigned two different utility
values depending which lottery (with different ranges) it
appears in.

I Hence CE values represent choices btw. lotteries with
different ranges instead of utility values.



The intersection of range-dependent utility and EU

1. The case of universal range: In real life there always exists
a tiny chance to die at once or to find a billion dollars on the
street.

I narrow framers (exhibiting EU paradoxes) and broad framers
(rational)

2. The case of consequentialism: The family (u[xl ,xu ]) is

induced from u by taking: u[xl ,xu ](x) = u(W+x)−u(W+xl )
u(W+xu)−u(W+xl )

,

∀x ∈ [xl , xu].



The case of consequentialism

utility of wealth

u[A,B]
u[A,C ]
u[B,C ]

A B C

1

W + A W + B W + C



Additional axiom: Shift and scale invariance

Definition
For a lottery P ∈ L, P : X → [0, 1] define its α, β-transformation
Pα,β ∈ L, Pα,β : X → [0, 1], such that P(x) = Pα,β(αx +β), where
α, β ∈ R, α > 0, x ∈ X and αx + β ∈ X , for all x ∈ supp(P).

Axiom (5)

Scale and Shift invariance: Let P,Q ∈ Lc
[xl ,xu ] for some

[xl , xu] ⊂ X , xl < xu. Then the following holds:
P % Q iffPα,β % Qα,β, for any
α > 0, β ∈ R : Pα,β,Qα,β ∈ Lc

αxl+β,αxu+β.

In what follows it is assumed that [0, 1] ⊂ X .



The decision utility representation

Theorem (Decision utility)

A preference relation %⊂ L× L satisfies axioms A1–A5 if and only
if there exists a unique strictly increasing and surjective function
D : [0, 1]→ [0, 1], such that for every pair of lotteries P,Q ∈ L the
following holds:

P % Q ⇐⇒ CE(P) ≥ CE(Q), (2)

where the certainty equivalent is defined as:

a) CE(P) = xl + (xu − xl)D−1
[∑

x∈X P(x)D
(

x−xl
xu−xl

)]
, for

any P ∈ L \ Ld , where xl = min(Rng(R)),
xu = max(Rng(R)),

b) CE(Px) = x , x ∈ X for any Px ∈ Ld .



Discussion on the axiom

1. The family (u[xl ,xu ]) is induced from a single decision utility
function D by taking:

u[xl ,xu ](x) := D

(
x − xl
xu − xl

)
, ∀x ∈ [xl , xu].

2. Axiom (5) together with range-dependence reminds of
Parducci’s range principle

3. Due to this axiom the model exhibits Constant Risk
Aversion of Safra and Segal (1998)

I The model intersects EU in the case of risk neutrality
I shift invariance equivalent to CARA, scale invariance

equivalent to CRRA, both equivalent to an affine utility



Observational equivalence btw. Decision Utility and Dual
Theory

Consider a binary lottery payoff (xl , 1− p; xu, p)

Decision utility: CE(x) = xl + (xu − xl)D−1(p),

Dual Theory: CE(x) = xl + (xu − xl)w(p).

I The same predictions iff D−1(p) = w(p) for every p ∈ [0, 1].

I Evidence for binary lottery provides equal support for
probability weighting and DU.

I For more than 2 outcomes the models can be discriminated.



Monotonicity and continuity

Definition
The CE functional is monotonic wrt FOSD if whenever
x �FOSD y, then CE(x) > CE(y).

Definition
The CE functional is continuous if for every sequence of lottery
payoffs {xn}, where n ∈ N and each xn is distributed according to
Fn, converging in distribution to the lottery payoff y distributed
according to G , the following holds: lim

n→∞
CE(xn) = CE(y).



Monotonicity and continuity in the decision utility model

Define: C (η) = 1− D(1− η), η ∈ [0, 1]. And then also

RRAD(η) = −ηD′′(η)
D′(η) , RRAC (η) = −ηC ′′(η)

C ′(η) .

Theorem (Monotonicity and Continuity)

1) The CE functional is monotonic wrt FOSD if and only if
RRAD and RRAC are non-decreasing for all η ∈ [0, 1]

2) The CE functional is continuous if and only if D is linear.

a) Continuity wrt. upper range increase holds if and only if
RRAD is constant (power function).

b) Continuity wrt. lower range increase holds if and only if RRAC

is constant (inverse power function).



Indifference lines for the decision utility satisfying
monotonicity

best prize x1

p1

1

p3

medium prize x2 worst prize x3



Example 1: The CDF of the Beta distribution

D(x) = A

∫ x

0
tα−1(1− t)β−1dt,

where x ∈ [0, 1], A = 1∫ 1
0 tα−1(1−t)β−1dt

, and α, β > 0.

Monotonicity conditions are satisfied in four special cases:

a) linear: D(x) = x , α = β = 1,

b) concave inverse power: D(x) = 1− (1− x)β, β > 1, α = 1,

c) convex power: D(x) = xα, α > 1, β = 1,

d) all S-shaped functions in this family, α, β > 1.



Example 2: The CDF of the Two-Sided Power Distribution

D(x) =

 x0

(
x
x0

)α
, 0 ≤ x ≤ x0,

1− (1− x0)
(

1−x
1−x0

)α
, x0 ≤ x ≤ 1,

where x0 ∈ (0, 1), α > 0.

Monotonicity conditions are satisfied in four special cases:

a) linear: D(x) = x , α = 1,

b) concave inverse power: D(x) = 1− (1− x)α, α > 1, x0 = 0,

c) convex power: D(x) = xα, α > 1,x0 = 1,

d) all S-shaped functions in this class, α > 1, x0 ∈ (0, 1).

All inverse S-shaped functions in both classes are excluded.



Indifference lines for TSPD decision utilities
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Example: Monotonicity violation in the RDU model

Consider two lotteries with different ranges:

I x = (0, 1
2 ; 100, 1

2 )

I y = (50, 1
2 ; 150, 1

2 )

1

0 50 100 150

1/2

CE(x)CE(y)

I Axiom A5 in the DU model imposes restrictions.

I But it is not enough to ensure monotonicity wrt FOSD — see
below



Downward range change

y =
(
10, 1

2 ; 20, 1
2

)
xd =

(
0, ε; 10, 1

2 − ε; 20, 1
2

)
ε > 0

0 10 20 30

Fy, Fxd

0.5

1

xd ≺FOSD y. Monotonicity requires limε→0+ CE(xd) ≤ CE(y).

xd
D−→ y. Continuity requires limε→0+ CE(xd) = CE(y).



Upward range change

y =
(
10, 1

2 ; 20, 1
2

)
xu=

(
10, 1

2 ; 20, 1
2 − ε; 30, ε

)
, ε > 0

0 10 20 30

Fy, Fxu

0.5

1

xu �FOSD y. Monotonicity requires limε→0+ CE(xu) ≥ CE(y).

xu
D−→ y. Continuity requires limε→0+ CE(xu) = CE(y).



Monotonicity and continuity for S-shaped functions
From now on let CE(xd), CE(xu) denote the limits as ε→ 0+.

1

0 10 20 30

xd =
(
0, ε; 10, 1

2
− ε; 20, 1

2

)
y =

(
10, 1

2
; 20, 1

2

)
xu =

(
10, 1

2
; 20, 1

2
− ε; 30, ε

)p

CE(xu)<CE(y)<CE(xd)

I Continuity is generally violated in the decision utility model

I Monotonicity is typically satisfied for S-shaped fcns

I Monotonicity is always violated for inverse S-shaped fcns



Monotonicity and continuity for the limiting functions

limiting functions D(x) CE(xd) CE(y) CE(xu)

convex power x2 15.81 17.07 17.07

concave power
√

x 14.57 12.5 12.5

convex inverse power 1−
√

1− x 17.5 17.5 15.43
concave inverse power 1− (1− x)2 12.93 12.93 14.81

I Power is continuous wrt upward range changes

I Inverse power is continuous wrt downward range changes

I Concave power and convex inverse power violate monotonicity

I Convex power and concave inverse power satisfy monotonicity



Monotonicity for convex power function

Consider D(x) = x2 . Intuition: It becomes less and less curved.

1

0 10 20 30

p

<CE(y)=CE(xu)CE(xd)



Monotonicity violation for concave power function

Consider D(x) =
√

x . Intuition: It becomes less and less curved.

1

0 10 20 30

p

CE(y)=CE(xu)<CE(xd)



EU Paradoxes

Coexistence of gambling and insurance:

(P − pP, p;−pP, 1− p) � (0, 1),

(H, 1− p; 0, p) ≺ (H − pH, 1).

This pattern of preferences is predicted by the decision utility
model if the following conditions are satisfied:

p > max(D(p), 1− D(1− p))



D(p)

p

1

1 − p
D(1 − p)

0 1-p 1

D(r)

r

p

Figure: gambling – no gambling and insurance – no insurance
comparison.

I binary lotteries: DU is observationally equivalent to DT

I However psychologically very different, based on an S-shaped
utility function and hence much closer to Markowitz (1952)



Russian roulette

Two situations:

1. A six-shooter with 4 loaded chambers. How much would you
pay to remove one bullet?

2. A six-shooter with 2 loaded chambers. How much would you
pay to remove two bullets?

Expected Utility Theory predicts that the two prices should be the
same (Assumption: if you die you don’t care)

4

6
u(death) +

2

6
u(w) =

3

6
u(death) +

3

6
u(w − P)

2

6
u(death) +

4

6
u(w) = u(w − Q)

Assuming that u(death) = 0 and u(w) = 1, we get:

u(w − P) = 2/3 = u(w − Q) ⇒ P = Q



Russian roulette
Let’s see how it is with the Decision Utility model:

death + (w − death)D−1

(
1

3

)
= death + (w − P − death)D−1

(
1

2

)
death + (w − death)D−1

(
2

3

)
= w − Q

Hence we get the following conditions:

D−1
(

1
3

)
D−1

(
1
2

) =
w − P − death

w − death

D−1
(

2
3

)
D−1 (1)

=
w − Q − death

w − death

Finally we get:

Q > P ⇐⇒
D−1

(
2
3

)
D−1 (1)

<
D−1

(
1
3

)
D−1

(
1
2

)



Russian roulette
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(
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The Allais paradox and the Common Ratio effect

Let y > x > 0, 1 > p > q > 0, q
p > p,

e.g. y = $4 000, x = $3 000, q = 0.2, p = 0.25.

(B) (∗)

Allais

CR

(A) (∗)
q y

1 − p
x

p − q

0

≺ 1
x

q
p y

1 − q
p

0

≺ 1
x

q y

1 − q
0

�

p x

1 − p
0

q y

1 − q
0

�

p x

1 − p
0

EU: (A),(B) equivalent and cannot coexist with (∗).
DU: (A),(B) equivalent and can coexist with (∗).
Rank: (A),(B) not equivalent and can coexist with (∗).



The Allais paradox and the Common Ratio effect

EU: ︸ ︷︷ ︸
(A),(B)

u(W+x)
u(W+y) <

(∗)︷ ︸︸ ︷
q
p <

u(W+x)
u(W+y) ... contradiction

DU: ︸ ︷︷ ︸
(A),(B)

D−1
(
q
p

)
<

(∗)︷ ︸︸ ︷
x
y <

D−1(q)
D−1(p)

... satisfied when D is flat in the

upper and steep in the middle part of its domain.

Yaari: ︸ ︷︷ ︸
(A)

w(q)
w(q)+1−w(1−p+q) <

(∗)︷ ︸︸ ︷
x
y <

w(q)
w(p)

︸ ︷︷ ︸
(B)

w
(
q
p

)
<

(∗)︷ ︸︸ ︷
x
y <

w(q)
w(p)



The Allais lotteries in the Marschak-Machina triangle

best prize x1

p1

1

p3
medium prize x2

worst prize x3P

P’ R’

R

SQ



The CR lotteries in the Marschak-Machina triangle

best prize x1

p1

1

p3
medium prize x2

worst prize x3P

P’
R’

R

S

Q



Extension I: Wealth effects present in the Gonzales, Wu
(1999) data
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The decision utility function is not constant

:
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Aspiration level

Risk setup: Consider the set of binary lotteries Lbin[xl ,xu ] with range

[xl , xu]: xp = (xu, p; xl , 1− p), p ∈ [0, 1]}
Let’s focus on the S-shaped decision utility function.

Definition
The relative aspiration level is the value al ∈ [0, 1] such that for
xal ∈ Lbin[xl ,xu ]:

CE (xal) = E[xal ]

And additionally:

∀p ∈ [0, 1] : p < al , CE (xp) > E[xp] risk− loving

∀p ∈ [0, 1] : p > al , CE (xp) < E[xp] risk− aversion

Moreover, the value CE (xal) is called the nominal aspiration
level and is denoted by AL.



Aspiration levels and risk attitudes

Risk loving occurs ∀x : CE (x) < AL (until we reach AL)
Risk aversion occurs ∀x : CE (x) > AL (after we reach AL)

al = 0 al = 0.4 al = 1



Weak wealth effects in TK 1992 data

In the decision utility model the relative aspiration level is
constant for all lottery ranges: al = λ = const



Two models satisfying Axiom 4”
Depending on the RRA parameter of u, we will get different
models. For example

I u(x) = log(x) (RRA=1)

λ =
log(W + AL)− log(W + xl)

log(W + xu)− log(W + xl)

W + AL = (W + xl)
1−λ(W + xu)λ

Hence W + AL = G[(W + xl , 1− λ; W + xu, λ)]

I u(x) = 1− 1/x (RRA=2)

λ =
−1/(W + AL) + 1/(W + xl)

−1/(W + xu) + 1/(W + xl)

1

W + AL
= (1− λ)

1

W + xl
+ λ

1

W + xu

Hence W + AL = H[(W + xl , 1− λ; W + xu, λ)]

I The second model fits the data best



The simple model is consistent with the stylized facts

1

W + AL
= (1 − λ)

1

W + xl
+ λ

1

W + xu

al =
λ(W + xl)

λ(W + xl) + (1 − λ)(W + xu)

I The relative aspiration level al :

I increases with wealth
I converges to the decision utility model as wealth goes to

infinity
I decreases with xu
I increases with xl

I The nominal aspiration level AL:

I is bounded
I tends to zero as wealth goes to zero (bankruptcy)

Having determined al , we fit a two-sided power distribution. In case of the
Gonzales, Wu (1999) data SSE in our model is 74.5 and in CPT it is 98.3



Extension II: Range-dependent utility under ambiguity

I Risk: x = (x1, p1; ...; xn, pn), where pi are probabilities
I Uncertainty case x = (x1,E1; ...xn,En), where Ei are events

I Full uncertainty: no information about probability
I Ambiguity: partial information about the probability

Let’s denote by A as the set of all acts with finite set of events.



Literature

0) Full uncertainty:

I Wald criterion: min
p∈∆

Epu(x)

I Hurwicz criterion: αmin
p∈∆

Epu(x) + (1− α) max
p∈∆

Epu(x)

1) Ambiguity: Multiple-priors models:
I Subjective beliefs:

I Gilboa, Schmeidler (1989): min
p∈C

Epu(x)

I Ghirardato, Maccheroni, Marinacci (2004):
αmin

p∈C
Epu(x) + (1− α) max

p∈C
Epu(x)

I Objective but imprecise probability:
I Jaffray (1989): EU if probabilities belong to intervals
αmin

p∈P
Epu(x) + (1− α) max

p∈P
Epu(x)

I Gajdos, Hayashi, Tallon, Vergnaud (2008): contraction model
min

p∈Φ(P)
Epu(x), where Φ transforms objective info into

subjective beliefs



Literature

2) Ambiguity: Second-order beliefs
I Klibanoff, Marinacci, Mukerji (2005): EµΦ(Epu(x)),

I µ is second-order probability
I Φ is the ambiguity attitude function

3) Ambiguity: source dependence

I Chew, Sagi (2006), (2008): source dependence, small worlds

I Ergin, Gul (2009): source dependence linked with
second-order beliefs



Our aim

In our model we aim to incorporate:
I Imprecise objective info + subjective beliefs

I Even with no information people state CEs
I Objective information should matter

I Second-order probability
I But objective, not subjective

I Source-depedence
I Different utility functions for different uncertainty levels



Hurwicz criterion is range-dependent

Definition (Hurwicz criterion)

In the complete ignorance case, given the pessimism index 1− λ
evaluate a given act x ∈ A with the following criterion:

(1− λ)xl + λxu

We can translate this criterion into the decision utility framework.
Let’s define the following decision utility correspondence:

D(x) =


0 for x ∈ [0, λ)
[0, 1] for x = λ
1 for x ∈ (λ, 1]

(3)

This correspondence is then used to obtain the certainty equivalent
for an act x ∈ A:

CE (x) = D−1(p) = λ, ∀p ∈ (0, 1)



The decision utility function for the complete ignorance
case: the Hurwicz criterion

1

0 λ 1

I We treat this as a limiting case in which uncertainty level is
maximal

I After renormalizing it is a range-dependent version of a
satisficing utility of Simon (1956) with aspiration level λ.



Ignorance, Ambiguity and Risk: changing the function’s
slope

Complete ignorance Ambiguity Risk

1

0 λ 1

1

0 1

1

0 1

How to measure and simulate ambiguity? - The experiment



Sample problems from the experiment

Sample risk problem:

Sample uncertainty problem:

Sample uncertainty problem:

14

15
27

28

14

15



Ellsberg paradox in the decision utility model

I Increasing Slope = Increasing Uncertainty

I It works well for Ellsberg:


