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Abstract

First, this paper introduces and axiomatizes range-dependent utility as a new conceptual frame-
work for decision-making under risk. It is a simple and well-defined generalization of Expected
Utility Theory in which utility depends on the range of lottery outcomes. Second, a special case of
this framework is proposed for prediction. It is based on applying a single utility function (decision
utility) to every normalized lottery range. The resulting decision utility model predicts well-known
Expected Utility paradoxes without recourse to probability weighting. Necessary and sufficient
conditions for the model to satisfy monotonicity with respect to FOSD are identified. The typical
decision utility function is S-shaped which is confirmed both by experimental data and normative
considerations.
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1 Introduction

Many restaurants use extremely expensive dishes as decoys. One probably will not buy them, but will

find other dishes a little cheaper. This example suggests that the attractiveness of a given price de-

pends on the range of prices in which it occurs. (Parducci, 1995, p.31) gives another example of range-

dependent judgments: On tropical islands where the temperature is almost always in the 80s, the natives

are sensitive to differences that seem hardly noticeable to us; thus, they complain of the extremes, of the

heat when the temperature is in the high 80s, of the cold when it is in the low 80s.

We believe that range effects are present also in the context of decisions under risk. What makes

people buy the US Powerball lottery tickets, even though their expected value is usually well below

their purchase price? Probably not the chance of winning one of the middle prizes, although winning

something is always pleasant. Definitely not the tiny chance of matching all the numbers, although
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people know it is possible (you yourself might have seen a jackpot winner on TV recently). We believe

it is the jackpot value that is the main feature that attracts people to playing Powerball. A $2-ticket buys

the possibility to dream about being really rich. It is therefore the range of outcomes that makes the

lottery so attractive. Clearly, the bigger the jackpot, the more tickets are sold. This is especially true

when the quoted jackpot is larger than any previous one. Buying frenzies usually develop in such cases

and the increase in ticket sales often exceeds the increase in jackpot value.1 Changes in the lottery rules

that went into effect for the Oct. 7, 2015 game only strengthened the effect described. Under the new

rules the odds of winning the jackpot of a single ticket decreased from about a 1 in 175.2 million chance

to 1 in 292.2 million. This should have decreased the popularity of the lottery, but instead it was meant to

and succeeded in fostering ticket sales. Why? Because decreasing the probability of hitting the jackpot

increased the likelihood that the jackpot would reach higher values2, which in turn attracted more sales.

Range effects may work in the opposite direction as well. One of the authors of this paper was

recently buying a vacation package. A beautiful destination suggested by the travel agent was, however,

immediately rejected because of a possibility (although very tiny) of a terrorist attack. A similar reaction

is observed when talking about monetary consequences. Many people decide not to enter a promising

business or investment because of a tiny chance of losing a big amount of money or even become

bankrupt; this happens no matter how attractive the other consequences are. The first question when

faced with a risky prospect is often How much is to lose? and the maximum possible loss, rather than its

exact likelihood, is the main factor impacting peoples decisions. These examples suggest that the upper

and lower bounds of the payoff range play an important role in decisions involving risk and are often

their main driver, especially since exact probabilities of events are usually unknown.

The goal of this paper is to apply the idea of range dependence to the context of decisions under risk.

Two concepts our approach is based on are range effects in judgement and Expected Utility with narrow

framing. After discussing them, we introduce our theory and discuss its main properties. All the proofs

are relegated to Appendix 2.

2 Motivating concepts

2.1 Range effects in judgement

Range effects were first considered by Parducci (1965) in his Range-Frequency Theory. This theory

describes psychophysical judgment as a compromise between two principles: the range principle and

the frequency principle. The first one assumes that subjects locate each stimulus relative to the subjective

end values. The place of a stimulus si in the range is reflected in the following definition:

Ri =
si − smin

smax − smin
,

with smin and smax representing the lowest and the highest of the stimulus values in the context of

stimuli affecting the judgement of si. Ri is thus a proportion that can take any value between 0 and 1.

On the other hand the frequency principle asserts that differences in response tend to be proportional to
1The expected ticket value may actually decrease due to the increased possibility of multiple winning tickets as was the case

for the first billion dollar jackpot in mid January 2016 (http://www.durangobill.com/PowerballOdds.html).
2The chance of a billion-dollar jackpot in any five-year period rose more than seven-fold, from 8.5% to 63.4%, as calculated

by Walt Hickey of http://fivethirtyeight.com.
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differences in stimulus rank:

Fi =
ri − 1

N − 1
,

where ri is the rank of stimulus i, and 1 and N are the ranks of the smallest and the largest of the

stimulus values. The final judgment function is a weighted sum of the range and the frequency principle.

Major part of Parduccis work was devoted to analyzing the stimulus distribution and noting that its

skewness impacts peoples judgments. In the present work, however, we apply only the range principle.

As shown in the paper, the range effects alone may capture the most important phenomena discussed in

the literature on decision-making under risk. Therefore we regard the frequency principle as the second

order effect.

Although Range-Frequency is the underlying theory, more recent studies provide a deeper explana-

tion of adaptation to the stimulus range at the sensory level. The best example of neural adaptation is the

ability of the eye to adjust to different ranges of light intensity. Webster et al. (2005) note that neurons

have a limited dynamic range and in order to realize its full capacity a neuron’s operating curve (of the

sigmoidal shape) should be matched to the range of stimulus levels. Thus short ranges produce steep

psychophysical functions, and wide ranges produce flatter functions (Lawless and Heymann, 1998). In

his deliberations on biology, evolution and human nature, Robson (2002) states that utility that has a

relative and local scale, rather than an absolute or global scale, may be biologically advantageous.

Adaptation to the stimulus range is observed also on a higher level of perception. For example

Janiszewski and Lichtenstein (1999) postulate that a consumers assessment of the attractiveness of a

market price depends on its comparison to the endpoints of the evoked price range, and show that prices

for various foods (cereal, cookies, snacks, soup) are viewed as more (or less) expensive when less (or

more) expensive products are added to the context. The same effect is observed for prices of airline

tickets and 2-liter soda bottles (Niedrich et al., 2001). Thus increasing the upper bound of the price

range for the fast-moving consumer goods produces a higher average price of goods selected by subjects

(Bennett et al., 2003). Moreover, Yeung and Soman (2005) examine situations in which consumers

choose between options that vary on two attributes and state that as their ranges widen, the range effect

makes perceptual differences on both attributes look smaller. Cialdini (1993) argues that it is much more

profitable for salespeople to present the expensive item first. After being exposed to the price of the large

item (like a $495 suit), the price of the less expensive one (a $95 sweater) appears smaller by comparison.

This effect is well described by the Weber Law, one of the fundamental laws of psychophysics. It states

that the just noticeable difference is a constant proportion of the initial stimulus magnitude.

2.2 Expected Utility with narrow framing

The understanding of the concept of utility in the context of decision-making under risk has evolved

since the introduction of Expected Utility Theory (von Neumann and Morgenstern, 1944). This theory

is characterized by the set of axioms among which independence is a crucial one. It implies that the

utility function used to evaluate lotteries is linear in probabilities. Expected Utility Theory does not

assume any specific interpretation for the model parameters. The most common interpretation is that the

decision maker’s preferences over lotteries defined on wealth changes are induced from his preferences

over lotteries defined on wealth levels. This interpretation, which Rubinstein (2012) calls the doctrine

of consequentialism, together with the Expected Utility Hypothesis, is known as the Expected Utility of
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wealth model (Cox and Sadiraj, 2006; Palacios-Huerta and Serrano, 2006; Lewandowski, 2014).

This model was challenged from the outset in the persistent quest to reconcile the empirical evidence

with the existing theories. Two approaches are generally taken. The first retains the Expected Utility

Hypothesis but dispenses with the consequentialist interpretation. The second calls the entire model into

question. A classic example of the first approach is provided by Markowitz (1952), who introduced

the idea of reference dependence (utility defined over wealth changes) in place of the terminal wealth

assumption to explain the coexistence of insurance and gambling. This idea was also one of the build-

ing blocks of Prospect Theory (Kahneman and Tversky, 1979), that assumes that gains and losses are

perceived as monetary amounts relative to some reference point.

Reference dependence alone cannot, however, explain other well-known choice paradoxes, e.g. the

Allais (1953) paradox. Kahneman and Tversky (1979) therefore included probability weighting, an

idea initially developed by Edwards (1954). Probability weighting (in its original and later cumulative

form) was subsequently adopted in many theories that attempted to explain empirical data (for a review

see Starmer, 2000). Unlike the introduction of reference dependence, which departs only from the

consequentialist interpretation, probability weighting departs from the Expected Utility hypothesis by

violating the independence axiom.

We propose an alternative approach to reference dependence that retains linearity in probabilities.

The assumption of consequentialism is replaced with range dependence. Instead of assuming a single

reference point, we assume two naturally given reference points, viz. the minimum and the maximum

lottery prize. These two reference points define the lottery range, relative to which each lottery outcome

is evaluated. Our approach differs however from context-dependent modeling. We assume narrow

framing: lottery valuation, which depends on its own range, is not influenced by other lotteries under

consideration.

3 The idea of range-dependent utility

In their seminal contribution, von Neumann and Morgenstern (1944) proposed the following method

of measuring preference for outcomes when gambles are involved. Suppose there are three outcomes,

A,B, and C ranked in increasing order of preference. An individual is asked to choose between the

following alternatives:

a) Receive C with probability p and A with probability 1− p;

b) Receive B with probability 1.

If p is chosen so that the individual is indifferent between the two alternatives, and we assign a utility of

1 to C and a utility of 0 to A, then p is a measure of preference for B: u(B) = pu(C) + (1− p)u(A) =

p, where u denotes the utility of outcomes. Note that the attractiveness of the middle outcome B is

measured relative to that of outcomes A and C. Alternatively, given a lottery in a) with some probability

p, one may choose an outcome B such that the individual is indifferent between receiving B or playing

the lottery. We call B the certainty equivalent (CE) of the lottery.
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3.1 Fitting range-dependent utilities

In what follows, we make use of the experimental data by Tversky and Kahneman (1992) that served

them to derive Cumulative Prospect Theory parameters. We use the same data to motivate the range-

dependent and the decision utility models. As this section aims only at presenting the idea, those esti-

mation details that are unnecessary at this stage are discussed in Appendix 1.

The data report Certainty Equivalent values for 28 binary lotteries elicited from a group of subjects.

There were 7 pairs of monetary outcomes: (0, 50), (0, 100), (0, 200), (0, 400), (50, 100), (50, 150),

(100, 200), and different probabilities of getting the higher outcome were considered for each of these

pairs. The interval [xl, xu], where xl and xu are the lower and the upper outcome, respectively, is
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Figure 1: Range-dependent utilities fitted to Tversky and Kahneman (1992) data. The estimated models take the
form of the shifted CDF of the Two-Sided Power Distribution (Kotz and van Dorp, 2004) with varying supports.
These supports correspond to the respective lottery ranges: [0, 50], [0, 100], [0, 200], [0, 400], [50, 100], [50, 150],
and [100, 200]. The CE values are measured on the horizontal axis and the probability of obtaining the greater
of the two prizes on the vertical axis. For example the lottery ($0, 0.9; $50, 0.1) has a CE value of $9, which
corresponds to the second from the left point in the upper graph.

referred to as the lottery range. We applied the von Neumann-Morgenstern idea of utility construction

5



separately for lotteries having the same range. It follows that the CE utility value in a given range

equals the probability of receiving the higher outcome. The (CE, probability) pairs were used to fit

seven nonlinear models, separately for each lottery range. (We could as well just interpolate the data

points over corresponding lottery ranges, but we wanted to obtain convenient parametric forms.) Two

restrictions were imposed on the estimated functions: they should start at the point (xl, 0) and end at the

point (xu, 1). These functions, which we call range-dependent utility functions,3 are presented in Figure

1.

Observe that these functions are S-shaped for each range. Moreover, the function curvature at a given

lottery outcome depends on the range in which this outcome occurs. For example, at the same value of

$75, the utility estimated in the range [0, 100] is concave, the utility estimated in the range [0, 200] is

roughly linear, and the utility estimated in the range [0, 400] is convex. This suggests that risk attitudes

for a given monetary outcome depend on its relative position in the lottery range. More importantly, this

finding is incompatible with the existence of a single utility function for all outcomes.

3.2 Fitting decision utility

Note that the range-dependent utility curves presented in Figure 1 have similar shapes. They differ

mostly in the horizontal stretch and shift of lottery outcomes. Therefore we hypothesize that a single

utility function defined on the interval [0,1] can be fitted after normalizing each outcome relative to the

lottery range. All certainty equivalents CE were linearly transformed to the [0, 1] interval according
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Figure 2: A single curve for all normalized ranges fitted with the CDF of the Two-Sided Power Distribution (Kotz
and van Dorp, 2004). The horizontal axis represents lottery outcomes in each range normalized linearly into the
interval [0, 1]. The vertical axis represents the probability of getting the xu prize in each lottery.

to: r = CE−xl
xu−xl

; note that this transformation is in agreement with the Parducci’s range principle. A

single nonlinear function was then fitted with the (r, p) data pairs. The function was restricted to pass

through the points (0, 0) and (1, 1). As demonstrated in Figure 2 a single utility function captures a lot

of variation in the data. We will denote this function by D and refer to as the decision utility function

(see Kontek, 2011).
3Tversky and Kahneman (1992) provide median Certainty Equivalents for a group of subjects only (individual data are not

available). Technically these utilities are therefore utilities of the hypothetical median subject.
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4 Axiomatic representation

4.1 Preliminaries

It is assumed that the decision maker cares only about probability distributions over outcomes. Thus

we will exchangeably use lottery payoffs (random variables) and lotteries (probability distributions) as

objects of choice, bearing in mind that both representations are equivalent given the assumed preference

structure. In particular, lotteries are used in the axiomatic model in Section 4, because it is standard

and natural in this context. Monotonicity and continuity, on the other hand, are analyzed in Section 5 in

terms of lottery payoffs due to mathematical convenience.

Let (S,S,Π) be a probability space. Let X = R be the set of monetary prizes. A lottery payoff

x : S → X is a real-valued simple random variable, i.e. the image x(S) is a finite subset of R. The set

of all lottery payoffs is denoted by Lp. A lottery payoff, for which x(s) = x, for all s ∈ S, for some

x ∈ X is called degenerate and is simply denoted by x.

A lottery is the distribution of a lottery payoff x ∈ Lp and is given by a function P : X → [0, 1], such

that P (x) = Π
(
x−1(x)

)
, for x ∈ x(S). The set of all lotteries is the set of all probability distributions

with finite support and is denoted by L. A degenerate lottery P x is a lottery with one-element support,

i.e. P (x) = 1 for some x ∈ X . The set of all degenerate lotteries is denoted by Ld ⊂ L. A lottery with

more than one element in the support is called nondegenerate.

There is a preference relation over lotteries %⊂ L × L. It is assumed that the decision maker cares

only about probability distributions, i.e. two lottery payoffs with equal distribution are equivalent.4 Hav-

ing in mind this equivalence, a typical lottery (or lottery payoff) will be denoted by (x1, p1; ...;xn, pn),

where n ∈ N xi ∈ X , pi ≥ 0, for i ∈ {1, 2, ..., n},
∑n

i=1 pi = 1.

Given a preference relation %⊂ L × L and a lottery P , the Certainty Equivalent of P is a number

CE(P ) ∈ X that satisfies: PCE(P ) ∼ P (the conditions needed to ensure the existence of such number

are specified in the next section). In particular, the Certainty Equivalent of a degenerate lottery P x is

equal to x. A mixing operation is performed on L, defined for every P,Q ∈ L and every α ∈ [0, 1]

as follows: αP + (1 − α)Q ∈ L is given by: (αP + (1 − α)Q)(x) = αP (x) + (1 − α)Q(x), ∀x ∈
X. For any lottery P ∈ L define its range to be a convex hull of the support of P , i.e. Rng(P ) =

[min(supp(P )),max(supp(P ))]. The set of all lotteries with range equal to [xl, xu] ⊂ X , xl < xu is

given by: L[xl,xu] = {P ∈ L : Rng(P ) = [xl, xu] ⊂ X}. The set of all degenerate lotteries with the

support in [xl, xu] ⊂ X , xl < xu is given by: Ld
[xl,xu]

= {P x ∈ Ld : x ∈ [xl, xu] ⊂ X}. We define

the set of lotteries comparable within the [xl, xu] range as Lc
[xl,xu]

=: L[xl,xu] ∪ Ld
[xl,xu]

, for xl < xu,

xl, xu ∈ X . It consists of nondegenerate lotteries having range [xl, xu] as well as degenerate lotteries

whose support is in [xl, xu].

Consider a nondegenerate lottery payoff x with range equal to [xl, xu]. Suppose that lottery payoff

y has range equal to [xl, x
′
u], where x′u > xu and lottery payoff z has range equal to [x′l, xu], where

x′l < xl. We will say that y is an upward range change relative to x and z is a downward range

change relative to x. A lottery payoff x distributed according to the CDF Fx dominates lottery payoff

y distributed according to the CDF Fy wrt FOSD, written x �FOSD y, if Fx(t) ≤ Fy(t) for all t ∈ R
with strict inequality at least for some t ∈ R. A sequence of lottery payoffs {xn}n∈N, such that each

4Formally, a preference relation over lottery payoffs %S⊂ Lp× Lp is defined by: x %S y ⇐⇒ P % Q, where P,Q are
the probability distributions of x,y, respectively.
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xn is distributed according to the CDF Fn, converges in distribution to the lottery payoff y, distributed

according to the CDF G (written xn
D−→ y), if the following holds: lim

n→∞
Fn(x) = G(x), for every

number x ∈ R at which G is continuous. The Certainty Equivalent functional CE : Lp → X satisfies

CE(x) = CE(P ), where P is a lottery and x is the associated lottery payoff. The CE functional is

monotonic wrt FOSD if x �FOSD y implies CE(x) > CE(y). The CE functional is continuous if for

every sequence of lottery payoffs {xn}n∈N, where each xn is distributed according to Fn, converging

in distribution to the lottery payoff y distributed according to G, the following holds: lim
n→∞

CE(xn) =

CE(y).

4.2 The range-dependent utility model

The range-dependent utility (RngDU) model generalizes the Expected Utility model by weakening its

Continuity and Independence axioms. Instead of obtaining a single utility function u used to represent

preferences between any pair of lotteries, different utility functions u[xl,xu] are allowed; each function

represents preferences over lotteries having the same range. Expected Utility holds separately for lot-

teries with the same range. Preferences between lotteries with different ranges are represented by their

Certainty Equivalent. The range-dependent utility model is not meant for prediction due to its high level

of flexibility, it should rather be regarded a general conceptual framework.

A range-dependent preference relation %⊂ L× L satisfies the following axioms:

Axiom 1 (Weak Order). % is complete and transitive.

Axiom 2 (Within-Range Continuity). Let [xl, xu] ⊂ X be any interval such that xl < xu. For every

P,Q,R ∈ Lc
[xl,xu]

it holds: P � Q � R =⇒ ∃α, β ∈ (0, 1) : αP +(1−α)R � Q � βP +(1−β)R.

Axiom 3 (Within-Range Independence). Let [xl, xu] ⊂ X be any interval such that xl < xu. For

every P,Q,R ∈ L and α ∈ (0, 1) such that P,Q, αP + (1− α)R,αQ+ (1− α)R ∈ Lc
[xl,xu]

it holds:

P % Q ⇐⇒ αP + (1− α)R % αQ+ (1− α)R, ∀α ∈ [0, 1].

Axiom 4 (Restricted Monotonicity). For any x, y ∈ X it holds: x > y ⇐⇒ P x � P y.

Axiom 4 states that more is better. Axioms 2 and 3 are the relaxed versions of Continuity and

Independence of the EU model. Consider the following two choice problems, in which outcomes are

measured in dollars:

(0, 12 ; 1,
1
2) vs. (−1M, ε; 1, 1− ε)

(0, 12 ; 1,
1
2) vs. (0, 1− ε; 1M, ε)

Suppose that someone chooses the lottery on the left in the first problem and the lottery on the right in the

second problem even if ε is infinitesimally small. In both cases such behavior is consistent with Axiom

2 (it is vacuously true), but inconsistent with the Continuity axiom of the EU model. Now consider the

following two choice problems where outcomes are measured in dollars:

(100, 0.5; 200, 0.5) vs. (0, 0.1; 200, 0.9)

(0, 0.1; 100, 0.45; 200, 0.45) vs. (0, 0.19; 200, 0.81)
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Note that lotteries in the second problem are the reduced versions of the compound lotteries in

which one obtains 0 with probability 0.1 and plays the corresponding lottery from the first problem with

probability 0.9. Suppose that someone chooses the lottery on the left in the first problem and the lottery

on the right in the second problem. Such behavior is consistent with Axiom 3 (it is vacuously true), but

inconsistent with the Independence axiom of the EU model. We now state the theorem.

Theorem 1 (Range-dependent utility). A preference relation %⊂ L × L satisfies axioms A1–A4 if and

only if for every interval [xl, xu] ⊂ X,xl < xu there exists a unique strictly increasing and surjective

function u[xl,xu] : [xl, xu] → [0, 1], such that for every pair of lotteries P,Q ∈ L the following holds:

P % Q ⇐⇒ CE(P ) ≥ CE(Q), (1)

where the certainty equivalent is defined as:

a) CE(R) = u−1
Rng(R)

[∑
x∈supp(R)R(x)uRng(R)(x)

]
, for any R ∈ L \ Ld,

b) CE(R) = x, for any R ∈ Ld, such that R = P x.

Proof. See Appendix 2.

The range-dependent utility model may be regarded as an Expected Utility model with narrow fram-

ing, in which the decision-maker evaluates a given lottery relative to its range. It generalizes the standard

Expected Utility model in the two following ways:

a. The case of a universal range: In real life there always exists a tiny chance to suddenly die

or to find a billion dollars on the street. One can thus argue that the range of lotteries under

consideration is always the same. If a person perceives the lottery range broadly (i.e. including

those extreme events) there is only a single range-dependent utility function to represent choices

between any pair of lotteries. Thus the decision maker behaves in accordance with the standard

EU model5. On the other hand if a person perceives a lottery range narrowly (i.e. excluding those

extreme events) there might be different utility functions applied to evaluate different lotteries. An

important implication would be that such people might violate the standard EU model if lotteries

under consideration have different ranges.

b. The case of consequentialism: Axioms 1-4 guarantee that the Expected Utility of wealth model is

a special case of the range-dependent utility model. Here we explicitly show how to construct the

equivalent range-dependent utility model for any Expected Utility of wealth model. Let %w be

a preference relation defined over lotteries in which the prizes are interpreted as the final wealth

levels; such lotteries award prize W + x with probability P (x), for P ∈ L and initial wealth

W ∈ R. Let %w be represented by a strictly increasing vNM utility function u. For each interval

[xl, xu] ⊂ X , xl < xu, define the range-dependent utility function u[xl,xu] : [xl, xu] → [0, 1],

5Formally, assume that X ∈ R is compact so that there exist xw, xb ∈ R such that for any P ∈ L, P xb % P % P xw .
In the standard EU model each lottery is evaluated relative to P xb and P xw . Consider now the range-dependent utility
decision maker who always allows tiny chance of xw and xb. Let P be the lottery with range [xl, xu] ⊂ X , xl < xu. Let
Pext := 0.5P xb + 0.5P xw . Then instead of lottery P , the decision maker can be modeled as evaluating the following lottery:
Pε := (1 − ε)P + εPext, where ε > 0. The range of such lottery is [xw, xb], for every ε > 0, but since X is bounded Pε

converges to P as ε tends to zero. Thus the range-dependent utility decision maker who evaluates Pε instead of P behaves in
the limit in the same way as the EU decision maker who evaluates P .
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such that: u[xl,xu](x) =
u(W+x)−u(W+xl)
u(W+xu)−u(W+xl)

. The model defined this way is equivalent to the EU

of wealth model by construction.

Range is a crucial element of the range-dependent utility model. In our setup we assume that it

comes with the description of the lottery. In real life it is often not the case. When a lottery is experi-

enced through repeated sampling its range depends on the specific experience and the decision maker’s

beliefs. For instance, many people realize that unfavorable events are possible just after being burgled

or suffering loss or damage, and, consequently, decide to buy an insurance even though they were pre-

viously reluctant to do so. The more general approach would be to analyze range-dependence in the

context of uncertainty with range being the interval between the lowest and the highest consequence in

the subjective lottery support. Such an approach may help explaining the description-experience gap.

4.3 The decision utility model

The decision utility model is a special case of the range-dependent utility framework which is used for

prediction. Apart from the four range-dependent utility axioms, it requires the additional axiom, namely

Scale and Shift invariance. It allows to have a single decision utility function defined on the interval

[0, 1] (i.e. the normalized lottery outcomes) instead of a great multiplicity of the range-dependent utility

functions (one for each range). The psychological motivation for the Shift and Scale Invariance is

given by the Weber Law, which states that increasing the stimuli range increases proportionaly the Just

Noticable Difference.

Definition 1. For a lottery P ∈ L define its α, β-transformation Pα,β ∈ L, such that P (x) = Pα,β(αx+

β), for all x ∈ X , where α, β ∈ R, α > 0, .

Axiom 5 (Scale and Shift Invariance). Let [xl, xu] ⊂ X be any interval such that xl < xu. For any

two lotteries P,Q ∈ Lc
[xl,xu]

and any α > 0, β ∈ R such that Pα,β, Qα,β ∈ L it holds: P % Q ⇐⇒
Pα,β % Qα,β .

Theorem 2 (Decision utility). A preference relation %⊂ L × L satisfies axioms A1–A5 if and only if

there exists a unique strictly increasing and surjective function D : [0, 1] → [0, 1], such that for every

pair of lotteries P,Q ∈ L the following holds:

P % Q ⇐⇒ CE(P ) ≥ CE(Q), (2)

where the certainty equivalent is defined as:

a) CE(R) = xl + (xu − xl)D
−1

[∑
x∈supp(R)R(x)D

(
x−xl
xu−xl

)]
, for any R ∈ L \ Ld, where xl =

min(Rng(R)), xu = max(Rng(R)),

b) CE(R) = x, for any R ∈ Ld, such that R = P x.

Proof. In Appendix 2.

Note that for any nondegenerate lottery R one can find a binary lottery (xl, 1 − p′;xu, p
′) that is

equivalent (preference-wise) to R. The probability p′, referred to as the equivalent probability of R, is

given by the expression in the squared brackets in the CE(R) definition in point a) both in Theorem
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1 and 2. When R is a binary lottery of the form (xl, 1 − p;xu, p), this expression reduces to p: since

D(0) = 0, and D(1) = 1, we have (1− p)D
(

xl−xl
xu−xl

)
+ pD

(
xu−xl
xu−xl

)
= (1− p)0 + p1 = p.

The axiom of Shift and Scale Invariance is crucial in the decision utility model. This axiom, added

to axioms 1–4, implies that the family of range-dependent utility functions
(
u[xl,xu]

)
xl,xu∈R: xl<xu

is

induced from a single decision utility function D by taking:

u[xl,xu](x) := D

(
x− xl
xu − xl

)
, ∀x ∈ [xl, xu].

This makes the model operational — there is only one function instead of many; eliciting this func-

tion is sufficient to predict choices involving different lottery ranges. The model gives strong testable

predictions as it has only one free element to choose, i.e. the shape of D.

Some may argue that this model is not particularly good at capturing the evidence where lottery

ranges vary a lot. For instance, somebody may well be indifferent between a certain $40 and a 50%

chance of winning $100, but will definitely prefer a certain $40 million to a 50% chance of winning

$100 million. Therefore the axiom of Shift and Scale Invariance should be treated as benchmark case.6

5 Continuity and monotonicity properties in the decision utility model

Consider an interval [xl, xu] ⊂ X, where xl < xu. The range-dependent utility model confined to the set

of lotteries comparable within this interval, i.e. in the set Lc
[xl,xu]

, is equivalent to the Expected Utility

model with a strictly increasing utility function u if and only if the following holds: u[xl,xu](x) = u(x),

for all x ∈ [xl, xu]. This is true separately for each range [xl, xu] ⊂ X . Hence the range-dependent

utility model is consistent with the First-Order Stochastic Domination for lotteries comparable within

the same range. However, monotonicity violations may still occur for nondegenerate lotteries having

different ranges.

Due to the axiom of Scale and Shift Invariance, the shape of a given utility function for one lottery

range uniquely determines the shapes of the utility functions for all other ranges. This restriction is,

however, not sufficient to exclude monotonicity violations. Consider the following two lottery payoffs

xdo = (0, ε; 10, 12 − ε; 20, 12), y = (10, 12 ; 20,
1
2), where ε is a very small but positive probability. Note

that xdo should have a lower CE value because it is dominated by y wrt FOSD. However, assuming the

decision utility function of the form D(x) =
√
x, for x ∈ [0, 1], CE(xdo) approaches 14.57 as ε tends

to zero whereas CE(y) = 12.5; hence monotonicity is violated.

Intuitively the problem may be explained as follows. When ε tends to zero, all the probability mass

is concentrated on the outcomes of 10 and 20 in both xdo and y. However as these lottery payoffs have

different ranges, the probability mass is spanned over the intervals
[
1
2 , 1

]
and [0, 1] of their respective

6Observe that in the decision utility model of Theorem 2 the shape of the utility function remains the same for different
ranges. On the other hand, in the range-dependent utility model of Theorem 1 the shape of the utility function may change
even due to small changes in the lottery range. It is possible to define an intermediate model, in which the shape of the utility
function is allowed to change considerably only for big changes in the lottery range. Such a model may be defined as follows:
The family of range-dependent utility functions

(
u[xl,xu]

)
xl,xu∈R: xl<xu

is induced from a single decision utility function
D : [0, 1] → [0, 1] (that captures range effects) and a single utility function v : X → [0, 1] (which captures attitudes towards

lottery consequences) by taking: u[xl,xu](x) = D
(

v(x)−v(xl)
v(xu)−v(xl)

)
. If v belongs to CRRA class, the resulting model exhibits

Scale Invariance (but not necessarily Shift Invariance). Similarly, if v belongs to CARA class, the resulting model exhibits
Shift Invariance (but not necessarily Scale Invariance). Such a model could explain the behavior described in the text.
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normalized ranges. A higher overall level of risk aversion in the interval
[
1
2 , 1

]
than in [0, 1] is thus

required to ensure that CE(xdo) < CE(y). This condition fails for the decision utility function of the

form D(x) =
√
x, which belongs to the class of decreasing absolute risk aversion.

A similar example of monotonicity violation may be presented for the following two lottery payoffs:

xup = (10, 12 ; 20,
1
2 − ε; 30, ε), y = (10, 12 ; 20,

1
2) where 1

2 > ε > 0 and the decision utility function

of the form D(x) = 1 −
√
1− x, for x ∈ [0, 1]. Lottery payoffs xdo and xup are a downward and an

upward range change relative to y (See Section 4.1 for a formal definition). The examples above show

that monotonicity violations need to be excluded for both downward and upward range changes relative

to any lottery.

5.1 Necessary and sufficient conditions

The main result of this section is the identification of necessary and sufficient conditions that guarantee

monotonicity and continuity in the decision utility model. As shown below monotonicity is satisfied for

a broad class of decision utility functions, whereas continuity is violated in general.

Definition 2. Given the decision utility function D, define the backward decision utility function

C : [0, 1] → [0, 1] such that C(x) = 1−D(1− x), for all x ∈ [0, 1].

It is easy to verify that the decision utility model in Theorem 2 point a) can be expressed equivalently

in terms of D (the original formulation) as well as in terms of C:

CE(R) = xl + (xu − xl)D
−1

 ∑
x∈supp(R)

R(x)D

(
x− xl
xu − xl

) ,

CE(R) = xu − (xu − xl)C
−1

 ∑
x∈supp(R)

R(x)C

(
xu − x

xu − xl

) . (3)

Function C in (3) evaluates a given relative lottery outcome backwards in comparison to function

D. Based on the two functions, D and C, we define two local measures of relative risk attitudes and two

benchmark decision utility functions.

Definition 3. Assume that the decision utility function D is twice differentiable on the interval [0, 1].

(the same is automatically true for function C. We define the Relative Risk Aversion for D and for C,

denoted RRAD,RRAC : [0, 1] → (−∞, 1) as:

RRAD(x) = −xD′′(x)

D′(x)
, x ∈ [0, 1],

RRAC(x) = −xC ′′(x)

C ′(x)
, x ∈ [0, 1].

Lemma 1. The following two equivalences hold:

a) RRAD is a constant function if and only if D(x) = xα, for x ∈ [0, 1], where α > 0,

b) RRAC is a constant function if and only if D(x) = 1− (1− x)β , for x ∈ [0, 1], where β > 0.

Proof. See Appendix 2.
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Remark: As the decision utility function is bounded on the interval [0, 1], the conditions α > 0 and

β > 0 in Lemma 1 imply that the RRAD and RRAC values are restricted to be less than 1.

We now state the main result of this section concerning monotonicity and continuity:

Theorem 3 (Monotonicity and continuity in the decision utility model). In the decision utility model,

monotonicity (continuity) holds if and only if the decision utility function simultaneously satisfies the

following two conditions:

a) RRAD(x) is non-decreasing (constant) for all x ∈ [0, 1]

b) RRAC(x) is non-decreasing (constant) for all x ∈ [0, 1]

Proof. See Appendix 2.

Condition a) in the above theorem prevents from monotonicity (continuity) violations involving up-

ward range changes, whereas condition b) prevents from violations involving downward range changes.

Monotonicity is relatively easy to obtain as the conditions have to be satisfied with inequalities (RRAD

and RRAC non-decreasing). As a consequence, a wide variation in the shape of the decision utility func-

tion is allowed. Continuity is much harder to obtain as the relevant conditions have to be satisfied with

equality (RRAD and RRAC constant). As a consequence, the decision utility model is discontinuous in

general:

Corollary 1. In the decision utility model, continuity holds if and only if D(x) = x, for all x ∈ [0, 1].

Proof. Obvious: the only function D which is both power and inverse power is linear.

A similar conclusion holds for the general model of range-dependence in Theorem 1. The only non-

trivial range-dependent utility model satisfying continuity coincides with the standard Expected Utility

model.

Due to the discontinuity feature, Scale and Shift Invariance assumed in the decision utility model

does not imply risk neutrality. This way the model nontrivially exhibits Constant Risk Aversion of

Safra and Segal (1998). This is not the case in the standard Expected Utility model: scale-invariance is

equivalent to CARA and shift-invariance to CRRA utility, so that both simultaneously boil down to risk

neutrality (Pratt, 1964, Lewandowski, 2013).

5.2 Examples of decision utility functions satisfying monotonicity conditions

In what follows we analyze monotonicity conditions algebraically for two parametric families of func-

tions: the CDF of the Beta distribution and the CDF of the Two-Sided Power Distribution.

Example 1. The decision utility function takes the form of the CDF of the Beta distribution:

D(x) = A

∫ x

0
tα−1(1− t)β−1dt, for x ∈ [0, 1]. (4)

where A = 1∫ 1
0 tα−1(1−t)β−1dt

, and α, β > 0. The Relative Risk Aversion functions for D and corre-

sponding C are as follows:

RRAD(x) = −(α− 1) + (β − 1) x
1−x , nondecreasing iff β ≥ 1

RRAC(x) = (α− 1) x
1−x − (β − 1), nondecreasing iff α ≥ 1
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Monotonicity conditions are satisfied in four special cases:

a) α = β = 1 corresponds to D(x) = x (linear),

b) α > 1, β = 1 corresponds to D(x) = xα, α > 1 (convex power function),

c) α = 1, β > 1 corresponds to D(x) = 1− (1− x)β, β > 1 (concave inverse power function),

d) α, β > 1 corresponds to all S-shaped functions in this family.

All functions for which α ∈ (0, 1) or β ∈ (0, 1) are excluded. In particular, all inverse S-shaped

functions, where α, β ∈ (0, 1), do not satisfy the monotonicity conditions.

Example 2. The decision utility function takes the form of the CDF of the Two-Sided Power Distribution

(Kotz and van Dorp, 2004):

D(x) =

 x0

(
x
x0

)α
, 0 ≤ x ≤ x0,

1− (1− x0)
(

1−x
1−x0

)α
, x0 ≤ x ≤ 1,

(5)

where x0 ∈ (0, 1), α > 0. The Relative Risk Aversion functions for D and corresponding C are as

follows:7

RRAD(x) =

{
1− α, 0 ≤ x < x0
x

1−x (α− 1) , x0 < x ≤ 1
, nondecreasing iff α ≥ 1

RRAC(x) =

{
1− α, 0 ≤ x < 1− x0

− x
1−x (1− α) , 1− x0 < x ≤ 1

, nondecreasing iff α ≥ 1

Monotonicity conditions are satisfied in four special cases:

a) α = 1 corresponds to D(x) = x (linear),

b) x0 = 1, α > 1 corresponds to D(x) = xα, α > 1 (convex power function),

c) x0 = 0, α > 1 corresponds to D(x) = 1− (1− x)α, α > 1 (concave inverse power function),

d) x0 ∈ (0, 1), α > 1 corresponds to all S-shaped functions in this class.

All inverse S-shaped functions in this class, for which α ∈ (0, 1), are excluded.

It is interesting that the same conclusions (i.e. convex power, concave inverse power, and all S-

shaped functions within each of the classes) result from analyzing the two different classes of functions.

5.3 Monotonicity and continuity in the Marschak-Machina triagle

In this section we analyze monotonicity and continuity graphically in the Marschak-Machina triangle.

Consider 3-outcome lotteries (x1, p1;x2, p2;x3, p3), where x1 < x2 < x3, pi ∈ [0, 1] for i ∈ {1, 2, 3}
and

∑3
i=1 pi = 1. Figure 3 shows the Marschak-Machina triangles with the indifference curves that

correspond to different forms of the decision utility function. In all cases the indifference curves inside
7Note that the functions RRAD and RRAC are not defined for x = x0, because the second derivative D′′(x0) does not

exists, i.e. the left derivative is different than the right derivate: D′′
−(x0) 6= D′′

+(x0). Fortunately, Theorem 3 can be modified
in this case to require D′′

−(x0) < D′′
+(x0) as well as C′′

−(1− x0) < C′′
+(1− x0).
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Figure 3: Indifference curves in the Marschak-Machina triangles for different decision utility functions. In each
of the triangles, the horizontal axis measures the probability of the worst and the vertical axis – of the best lottery
outcome. Lotteries inside the triangles and on the hypotenuse have the same range and hence indifference curves
are straight parallel lines as implied by Expected Utility Theory. Moving from the inside of the triangle to its legs
changes the lottery range, which leads to discontinuous jumps in the indifference curves. For power and inverse
power functions, jumps occur at only one of the legs. Monotonicity is satisfied for the three functions depicted in
the upper raw and violated for those three depicted in the lower raw. Note! Jumps are presented as sharp kinks
rather than real discontinuities for better visibility.

the triangle are straight parallel lines as implied by Expected Utility Theory. Note that the range is

[x1, x3] for lotteries located inside the triangle and on the hypotenuse, [x2, x3] for lotteries located on

the vertical leg, and [x1, x2] for lotteries located on the horizontal leg. Therefore, the indifference curves

are generally discontinuous at both legs of the triangle but not on the hypotenuse (two rightmost panels

in Figure 3). There are two limiting cases, for which discontinuity occurs at only one of the triangle

legs:

a) the power function D(x) = xα, α > 0 (two leftmost panels), where the indifference curves are

discontinuous only at the vertical leg,

b) the inverse power function D(x) = 1−(1−x)β , β > 0 (two middle panels), where the indifference

curves are discontinuous only at the horizontal leg.

The features described above can be derived as a direct consequence of Theorem 3 and Lemma 1: the

power function satisfies continuity with respect to upward range changes and violates continuity with

respect to downward range changes. The opposite holds for the inverse power function: continuity is

satisfied wrt downward and violated wrt upward range changes.

When moving from the inside of the triangle to the triangle legs, the jumps of indifference curves

can either be directed towards the origin, in which case they satisfy monotonicity (three upper panels),

or away from the origin (three lower panels), in which case they violate monotonicity. The main con-

clusion is that it is "easiest" to satisfy monotonicity if the decision utility function is S-shaped, i.e. it
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is characterized by low marginal utility at the edges of its domain (close to 0 and 1) and high marginal

utility in the middle (upper right panel). Per contra monotonicity is violated by all inverse S-shaped

decision utilities (lower right panel).

6 Decision utility vs. probability weighting

It has been argued in this paper that the typical decision utility function is S-shaped. It is characterized

by low marginal utility at the edges of its domain and high marginal utility in the middle. Looking at

the inverse of the decision utility function, the arguments of which are (equivalent) probabilities, one

can note high sensitivity to probabilities close to 0 or 1 and low sensitivity for the middle probabilities.

This feature resembles the probability weighting function of CPT. One could thus have an impression

that the decision utility model is merely an algebraic sleight of hand with the (inverse) decision utility

function in place of the probability weighting function. This impression is only partially true and only

in the context of binary lotteries.

6.1 Observational equivalence for binary lotteries

There is no probability weighting in the decision utility model. By contrast (cumulative) probabilities

are treated nonlinearly in rank-dependent utility models, such as Dual Theory of choice (Yaari, 1987)

or CPT (Tversky and Kahneman, 1992).8 It turns out, however, that in the case of binary lotteries

the decision utility model and Dual Theory (or CPT with a linear value function) are observationally

equivalent. To see this observe that for a binary lottery payoff (xl, 1 − p;xu, p), the decision utility

model given by Theorem 2 and Dual Theory with a (de-) cumulative probability weighting function w

can be written, respectively, as follows:

CE(x) = xl + (xu − xl)D
−1(p), (6)

CE(x) = xl + (xu − xl)w(p).

Note that the two models give the same predictions if and only if D−1(p) = w(p) for every p ∈ [0, 1].

The important implication of this fact is that the two models cannot be distinguished based on the

evidence involving binary lotteries only. It also means that such evidence, usually brought forward to

support the idea of probability weighting, supports the idea of decision utility to the same extent. The

equivalence between decision utility and cumulative probability weighting no longer holds for multi-

outcome lotteries. This allows for model discrimination.

6.2 Descriptive accuracy of the model

As discussed above, in the case of binary gambles the decision utility model is empirically equivalent to

the Yaari model. The advantage of CPT over the decision utility model results from an additional func-

tion (value function v) in CPT. In the case of Tversky and Kahneman (1992) data adding this function

reduces SSE by 10% (see Appendix 1 for details).
8For lotteries involving exclusively non-negative (or exclusively non-positive) outcomes CPT differs from Dual Theory

only by having an additional value function for outcomes; when this function is linear both models are equivalent.
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In the case of three-outcome lotteries, the important feature of the decision utility model illustrated

in Figure 3 is that the indifference curves in the Marschak-Machina triangle are straight parallel lines

inside the triangle as per the EU hypothesis and are discontinuous at the legs (but not at the hypotenuse).

On the other hand, CPT predicts that the indifference curves are concave in the upper left and convex in

the lower right part of the MM-triangle. Importantly, these indifference curves are nonlinear but smooth

everywhere.

There is a vast experimental literature that supports predictions of the decision utility model. Harless

(1992) finds that systematic violations of expected utility "disappear when lotteries are nudged inside

the triangle". This suggests that the indifference curves inside the triangle are straight parallel lines. The

same conclusion can be derived from other works. Conlisk (1989) analyzes three variants of the Allais

paradox and shows that the EU violations are largely diminished when the lotteries involved are located

inside the MM-triangle. He concludes that the results "favor the certainty effect over the fanning out

hypothesis for at least the case of straight indifference lines". Sopher and Gigliotti (1993) observe that

the patterns in the off-border treatment are significantly different than those in the on-border treatment.

They find that in the former case expected utility performs well. Harless and Camerer (1994) note

that which theories are best depends on whether lotteries being compared have the same support (EU

fits better) or not (EU fits poorly). Cohen (1992) states that Camerer (1989) within-subject analysis

confirms that most violations of EU involve lotteries at the legs of the MM-triangle and they are never

significant in the interior of the triangle and on the hypotenuse. The claim that EU performs well inside

the MM-triangle is also supported by Hey and Orme (1994).

In a recent experimental work Kontek (2016) estimates nonparametrically indifference curves using

certainty equivalents. Many of the lotteries considered were located close to the MM-triangle bound-

aries. The main finding is that the indifference curves exhibit considerable jumps when moving from

the inside of the triangle to its legs. These jumps are directed towards the origin. Econometrically, this

effect is characterized by a sudden change in the slopes of the indifference curves. This result is con-

sistent with the decision utility model satisfying monotonicity. Moreover, Kontek used the same data to

test six decision-making models. The decision utility model that correctly predict jumps of indifference

curves at the triangle legs offered the best estimation results. The CPT model, which predicts smooth

and continuous indifference curves, was only ranked fourth with the Sum of Squared Errors of more

than 50% greater than that for the decision utility model even though it uses one parameter more (the

one corresponding to the value function). These results suggest that boundary effects at the legs of the

triangle capture most variation in the data. Nonlinearity of the indifference curves in the interior of the

triangle is only a second-order effect. The decision utility model performs well because it preserves the

Expected Utility Theory features inside the triangle and, at the same time captures the boundary effects.

7 Accommodating EU paradoxes

The decision utility model explains some well known Expected Utility paradoxes without recourse to

probability weighting. The paradoxes considered here are: the Common Ratio effect and the Allais

paradox, the coexistence of insurance and gambling (including the powerball case), and the Rabin (2000)

paradox.
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7.1 The Allais paradox and the common ratio effect

For y > x > 0, 1 > p > q > 0, q
p > p, the following two pairs of preference patterns are general

versions of the two well-known paradoxes:

the Allais paradox

{
(y, q;x, 1− p; 0, p− q) ≺ (x, 1), (A)

(y, q; 0, 1− q) � (x, p; 0, 1− p). (∗)

the Common Ratio effect

{ (
y, qp ; 0, 1−

q
p

)
≺ (x, 1), (B)

(y, q; 0, 1− q) � (x, p; 0, 1− p). (∗)

By stating the paradoxes jointly in the above way, we can draw interesting conclusions. Under EU

the conditions (A) and (B) are equivalent but they are inconsistent with (∗):

︸ ︷︷ ︸
(A),(B)

u(W+x)
u(W+y) <

(∗)︷ ︸︸ ︷
q
p < u(W+x)

u(W+y)

where W ≥ 0, u(W ) = 0 and u is the vNM utility function.

Under the decision utility model (A) and (B) are also equivalent. This time however they are

consistent with (∗):

yD−1
(
q + (1− p)D

(
x
y

))
< x (A)

yD−1(q) > xD−1(p) (∗)
yD−1

(
q
p

)
< x (B)

 ⇐⇒ ︸ ︷︷ ︸
(A),(B)

D−1
(
q
p

)
<

(∗)︷ ︸︸ ︷
x
y < D−1(q)

D−1(p)

There is a single condition to predict both kinds of paradoxes; the function D should be flat enough in

the upper part of its domain, i.e. in the interval
[
D−1

(
q
p

)
, 1
]
, and steep enough in the middle part of

its domain, i.e. in the interval
[
D−1(q), D−1(p)

]
. These restrictions are compatible with an S-shaped

decision utility function D. Consider for example y = $4000, x = $3000, p = 0.25, q = 0.2. In order

to predict both paradoxes the decision utility model requires: D−1(0.8) < 0.75 < D−1(0.2)
D−1(0.25)

, which is

satisfied by the decision utility function estimated in Appendix 1.

Dual Theory can predict both paradoxes as well, but, interestingly, the conditions (A) and (B) are

not equivalent any more. This leads to separate conditions for the Allais and the CR paradoxes:

the Allais paradox: ︸ ︷︷ ︸
(A)

w(q)

w(q) + 1− w(1− p+ q)
<

(∗)︷ ︸︸ ︷
x

y
<

w(q)

w(p)
,

the Common Ratio effect: ︸ ︷︷ ︸
(B)

w

(
q

p

)
<

(∗)︷ ︸︸ ︷
x

y
<

w(q)

w(p)
,

where w is the (de-) cumulative probability weighting function. Note that the condition for the CR

effect is the same as in the decision utility model if one replaces w with D−1. This is true because it

18



concerns binary lotteries in which case both models are observationally equivalent. On the contrary,

the conditions for the Allais paradox are different in the two models because one of the Allais lotteries

involves three outcomes. The conditions for both effects differ also in the case of CPT, where x and y

are replaced by v(x) and v(y), respectively, where v is the CPT value function.

7.2 The coexistence of gambling and insurance

Consider the fair gambling problem. There is a small chance p > 0 to win a large prize P > 0. The

price for a lottery ticket is actuarily fair, i.e. equals pP . The decision maker decides whether to buy the

lottery ticket or not. Similarly, consider the fair insurance problem. There is a small probability p > 0

that your property (valued at H > 0) is destroyed completely. The price for a full insurance of the

property is actuarily fair, i.e. equals pH . The decision maker decides whether to insure the property or

not. A coexistence of insurance and gambling arises when an individual chooses to gamble and insure

at the same time. It may be represented by the following pattern of preferences:

(P − pP, p;−pP, 1− p) � (0, 1),

(H, 1− p; 0, p) ≺ (H − pH, 1).

This pattern is predicted by the decision utility model if the following conditions are satisfied:

−pP + PD−1(p) > 0

HD−1(1− p) < H − pH
⇒ p > max(D(p), 1−D(1− p))

The conditions require that the decision utility function is flat at the boundaries of its domain, i.e. close

to 0 and close to 1. It is the case for an S-shaped function, which is graphically illustrated in Figure 4.

D(p)

p

1

1− p

D(1− p)

0 1-p 1

D(r)

r

p

Figure 4: Coexistence of insurance and gambling is possible due to an S-shaped decision utility. The formulas
in the south west apply to gambling – no gambling and the formulas in the north east to insurance – no insurance
comparison.

Dual Theory also predicts the above preference patterns because lotteries considered are binary.

Algebraically the difference is small – in the above conditions one needs to replace D−1 with w –

but the underlying psychological interpretation (probability transformation vs. outcome transformation)

differs completely. Note that the latter explanation is close to that of Markowitz (1952) who uses an

S-shaped utility function (separate for gains and losses) to predict the paradox.

19



Powerball lottery case

Closely related to the coexistence of insurance and gambling are the examples considered in the Intro-

duction. In what follows we model them in a highly simplified way. Consider two Powerball lotteries:

one which offers a huge prize P with a tiny probability p, or otherwise nothing; and another which offers

an even larger prize λP with an even tinier probability p
λk , where λ, k > 1. Note that the expected value

of the second lottery is lower although its range is larger. Then, consider two projects. In the first you

may either suffer a big loss L with a tiny probability p or keep the status quo otherwise. In the second

you may suffer an even bigger loss (say of a bankrupting severity) λL with an even tinier probability p
λk ,

or keep the status quo otherwise, where λ, k > 1. Note that the range of the second project as well as its

expected value are larger than in the first project. In analogy to the example given in the introduction,

we expect that many people will prefer the lottery with a higher jackpot value and at the same time

will avoid the project with a higher loss, even though their expected values are lower than those of the

respective alternatives. This may be expressed as:

(P, p; 0, 1− p) ≺
(
λP, p

λk ; 0, 1−
p
λk

)
(−L, p; 0, 1− p) �

(
−λL, p

λk ; 0, 1−
p
λk

)
The decision utility model predicts this pattern of preferences under the following conditions:

D−1(p) < λD−1
( p
λk

)
C−1(p) < λC−1

( p
λk

)
Assuming that D is of the form of the Two-Sided Power Distribution (with parameters x0 and α > 0)

considered in Example 2 and p < x0 < 1−p, it must be that α > log(λk)
log(λ) in order to satisfy the conditions

stated above. This in turn implies that D is "sufficiently" S-shaped – it is sufficiently convex for [0, x0]

and sufficiently concave for [x0, 1].

Can the standard EU model explain this preference pattern as well? Yes, but this would require that

the decision maker is sufficiently risk loving for wealth levels above his current one, i.e. over the interval

[W,W + λP ], and sufficiently risk averse for wealth levels below his current one, i.e. over the interval

[W − λL,W ]. It is well accepted that such explanation based on an inverse-S shaped utility of wealth

is far-fetched (see also Friedman and Savage, 1948 and its critical evaluation by Markowitz, 1952).

7.3 The Rabin paradox

Rabin (2000) has found that the standard Expected Utility model implies the following behavior: if an

individual rejects an equal chance gamble of winning $110 or losing $100 at all wealth levels below

$300 000 (which Rabin finds plausible), then the same individual must also reject an equal chance gam-

ble of losing $1 000 or winning an arbitrarily high sum of money at any wealth level (which Rabin finds

implausible). Let W denote initial wealth of the decision maker. In order to overcome the paradox

presented by Rabin, the following pattern of preferences should be exhibited by the decision maker:

($110, 0.5;−$100, 0.5) ≺ ($0, 1), ∀W < $300 000,

($∞, 0.5;−$1 000, 0.5) � ($0, 1), ∀W > 0.
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This pattern is exhibited by the decision utility model if the following conditions are satisfied:

−100 + 210D−1(0.5) < 0

−1 000 + lim
M→∞

(M + 1000)D−1(0.5) > 0
⇒ D

(
100

210

)
>

1

2
.

The resulting condition is satisfied by any decision utility function which is steep enough in the interval[
0, 100210

]
. This is the case for the decision utility function estimated in Appendix 1.

The conclusion of the descriptive part of arguments supporting the decision utility model is that it

fits data and predicts some well-known paradoxes using an S-shaped decision utility function instead of

probability weighting.

8 Related models

In this section we relate our model with the existing literature. A three criteria decision model of Cohen

(1992) is closest to our approach. The model assumes that choices between lotteries depend on the

security level and the potential level (i.e. the worst and the best of probable outcomes). For some

lotteries choice is represented by the mere comparison of those levels in both lotteries. If this is not

sufficient, the choice is completed by the value comparison of an affine function of the expected utility,

the coefficients of which depend on both the security and potential level. Let P be a lottery, and xl, xu
its worst and best outcome. Then the utility of this lottery in Cohen’s model is given by

V (P ) = a(xl, xu)Eu(P ) + b(xl, xu), (7)

where u is the standard vNM utility function and a(xl, xu) > 0, b(xl, xu) are coefficients, which depend

only on xl, xu. The model shares some important characteristics of our approach: Expected Utility for

lotteries sharing the same range and discontinuity at the legs in the Marschak-Machina triangle. At the

same time there are important differences.

Cohen’s model is only slightly less general than the range-dependent utility model and therefore

allows a comparable number of free elements: separate coefficients a(xl, xu), b(xl, xu) for every range

in addition to a single utility function u. Cohen did not propose any operational model suitable for pre-

diction, such as the decision utility model. Apart from that there is a number of differences between the

two approaches: 1) Lotteries are compared via their utility values calculated according to 7 in Cohen’s

approach. This creates the issue of noncomparable utility values for different ranges and a bunch of tech-

nical issues such as the notions of overlapping and connected preferences. These problems are avoided

in our approach where lotteries are compared via their CE values. 2) Cohen explicitly assumes the

dominance axiom (her axiom 5) which leads to conditions on the coefficients a(xl, xu), b(xl, xu); these

lack an intuitive interpretation. We provide first the representation and then provide the necessary and

sufficient conditions to guarantee the monotonicity in the decision utility model. 3) The axioms of inde-

pendence and continuity hold only for lotteries having the same range in Cohen’s approach; they hold

for lotteries comparable within the same range in our approach. Moreover, Cohen needs an additional

axiom strengthening independence, that we do not require.

The Lottery Dependent Utility model (Becker and Sarin, 1987), although seemingly related, is fur-

ther apart from our approach. It departs from the classical EU model by allowing the utility of a given
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lottery prize to depend upon the attributes of the lottery itself; these attributes are captured by a function

h. Additionally, the utility function is assumed to be exponential.

A support for an S-shaped utility function was given by several authors. Markowitz (1952) proposed

his hypothesis of a double S-shaped utility function: one for gains, and one for losses. This allows

predicting the coexistence of risk aversion and risk seeking both in the gain and in the loss domain.

Bordley and LiCalzi (2000) show that the set of Savage (1954) axioms implies that one should select

an action which maximizes the probability of meeting an uncertain target. As the utility function U

defined to be equal to this probability is bounded and increasing, it has all the properties of a cumulative

distribution function (CDF) over consequences. The authors observe that a unimodal probability density

for the target corresponds to an S-shaped CDF. In a similar vein Abbas and Matheson (2009) analyze the

effects of performance targets on decisions and show that many target-based incentives induce S-shaped

utility functions. Rayo and Becker (2007) study hedonic utility and derive two types of happiness

functions. The first type is a step function that delivers the maximum level of happiness whenever the

agent exceeds his performance benchmark. The second type has a smoother "S" shape and arises when

the agent has an information advantage over the principal when selecting his actions.

Besides our model, there are other approaches that use elements of Range-Frequency Theory of

Parducci (1965). Stewart et al. (2014) manipulate probabilities and outcomes and find that the estimated

shapes of the value and probability weighting functions depend on the entire set of lotteries involved in

a given experiment. To explain this, they use the frequency principle of Parduccis theory. The frequency

principle is not used in the decision utility model as we regard it as the second order effect. This topic

is left for a future version of the theory, in which also the distribution of outcomes (more specifically its

skewness) in the lottery range impacts risky decisions.

9 Conclusions

In this paper we have introduced a new model of decision-making under risk. Support for this model

can be given using various criteria:

Descriptive accuracy: Most of the existing experimental evidence in decision-making under risk in-

volves binary lotteries. In this case range-dependence is equally supported as rank-dependence. De-

scriptive predictions of the two concepts differ in the case of multi-outcome lotteries, with a lot of

evidence supporting range-dependence as discussed n Section 6.2.

Psychological plausibility: The two concepts offer, however, an entirely different psychological expla-

nation of the same empirical evidence. Unlike its mathematical elegance, psychological plausibility

of cumulative probability weighting is disputable (Birnbaum, 2004). Range-dependence, on the other

hand, seems more natural - examples supporting this view have been given in Section 1.

Normative appeal: It is well accepted that Expected Utility Theory defines the standard of rationality for

decision-making under risk. However the standard EU model fails in accommodating experimental evi-

dence in many decision contexts known as EU paradoxes. The model proposed here aims at explaining

these paradoxes by departing from the rationality principle as little as possible. Therefore the decision

utility model retains linearity in probabilities and converges to the standard EU model as decision makers

enrich the support of the lotteries and make the ranges wider.
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Predictive power: The decision utility model gives strong testable predictions because it is refutable

and parsimonious: its only free element is the decision utility function. In CPT, by comparison, we

have the value function, the probability weighting function, and the location of a reference point. The

shortcoming of the decision utility model is, however, that loss aversion is not incorporated. We leave it

for future work.
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Appendix 1: Estimation details and data

We provide estimation details of the range-dependent and decision utility models (further RngDU and

DU) for the Tversky and Kahneman (1992) data which were discussed in Sections 3.1, 3.2, 6.2 and 7.

We demonstrate that the decision utility function D can easily be measured in practical decision analysis

applications. As shown below the estimation procedure of the DU model is the same as that of the EU

and CPT models.

The (CE values, probability) pairs were fitted using a standard nonlinear least squares procedure

implemented with the Wolfram Mathematica R© NonlinearModelFit function (similar functions are avail-

able in many popular statistical packages – R, Matlab, or MS Excel). The following specifications were

used:

1. The RngDU and DU models of Theorem 1 and 2 applied to binary lotteries (see equation 6)

were fitted using the decision utility function of the form of the CDF of the Two-Sided Power

Distribution (see Example 2 in Section 5.2) having two parameters x0, α:

CERngDU/DU = xl + (xu − xl)×

 x0

(
p
x0

)1/α
, for 0 ≤ p ≤ x0,

1− (1− x0)
(

1−p
1−x0

)1/α
, for x0 < p ≤ 1.

(8)

Note that: a) the formula (8) uses the inverse of (5) - the definition of the CDF of the TSPD, b) we

assume the same formula (8) to derive a single DU model and many RngDU models (each with its

own pair of parameters) c) by using CDF we implicitly impose two restrictions on the estimated

utility functions: the value of 0 at the lower end and of 1 at the upper end of the respective domain.

This resulted in:

(a) Seven RngDU models corresponding to seven lottery ranges:

Range [0, 50] [0, 100] [0, 200] [0, 400] [50, 100] [50, 150] [100, 200]

x̂0 .33 (.00) .25 (.02) .15 (.08) 0.16 (.00) 0.32 (.06) 0.23 (.02) 0.37 (.04)

α̂ 2.00 (.01) 2.34 (.10) 2.05 (.23) 1.65 (.00) 2.58 (.39) 2.29 (.12) 2.29 (.23)

(b) Single DU model in two versions: i) DU: the form specified in (8), which minimizes nominal error –
this form was reported in Table 1; or ii) DU’: the form, where CE values are normalized (subtract xl

from both sides of (8) and divide them by xu − xl), which minimizes relative error – this form was
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used to derive Figure 2. The estimated parameters in these two models were:

Model DU DU’
x̂0 .20 (.03) .27 (.02)

α̂ 1.94 (.08) 2.18 (.10)

2. CPT model: The form and parameter values β̂, γ̂ were taken from Tversky and Kahneman (1992):

CECPT =

[
xβl +

(
xβu − xβl

) pγ

(pγ + (1− p)γ)1/γ

]1/β

β̂ = 0.88, γ̂ = 0.61.

3. EU model (of income): The utility function is assumed to be a power function with parameter β:

CEEU =
[
xβl +

(
xβu − xβl

)
p
]1/β

β̂ = 0.60 (.08).

The predicted CE values and Sum of Squared Errors of the models are presented in Table 1.

Appendix 2: Proofs

Proof of theorem 1

Step 1. Necessity: The representation given by (1) satisfies axioms A1–A4.

It is obvious for Axioms 1 and 4 (Weak Order and Montonicity). Consider Within-Range Conti-

nuity. Take any [xl, xu] ⊂ X , xl < xu and P,Q,R ∈ Lc
[xl,xu]

. By expression (1), the following

is true: P � Q � R ⇐⇒ CE(P ) > CE(Q) > CE(R). Since u[xl,xu] is a strictly increasing

and surjective function, it follows that u[xl,xu](CE(P )) > u[xl,xu](CE(Q)) > u[xl,xu](CE(R)) and:

limα→1 u
−1
[xl,xu]

(αu[xl,xu](CE(P )) + (1− α)u[xl,xu](CE(R))) = CE(P ),

limα→0 u
−1
[xl,xu]

(αu[xl,xu](CE(P )) + (1 − α)u[xl,xu](CE(R))) = CE(R). Therefore there exist α, β ∈
(0, 1), such that u−1

[xl,xu]
(αCE(P ) + (1− α)CE(R)) > CE(Q) > u−1

[xl,xu]
(βCE(P ) + (1− β)CE(R)).

This in turn is equivalent to αP +(1−α)R � Q � βP +(1−β)R, and hence Within-Range Continuity

is satisfied.

Consider Within-Range Independence. Take any [xl, xu] ⊂ X , xl < xu, any P,Q ∈ Lc
[xl,xu]

and

any R ∈ L : αP + (1 − α)R,αQ + (1 − α)R ∈ Lc
[xl,xu]

, for some α ∈ (0, 1). Using (1) and

the fact that u[xl,xu] is strictly increasing and surjective, we deduce that the axiom must hold: P %

Q ⇐⇒ CE(P ) ≥ CE(Q) ⇐⇒
∑

x∈supp(P ) P (x)u[xl,xu](x) ≥
∑

x∈supp(Q)Q(x)u[xl,xu](x) ⇐⇒
α
∑

x∈supp(P ) P (x)u[xl,xu](x)+ (1−α)
∑

x∈supp(R)R(x)u[xl,xu](x) ≥ α
∑

x∈supp(Q)Q(x)u[xl,xu](x)

+ (1 − α)
∑

x∈supp(R)R(x)u[xl,xu](x) ⇐⇒
∑

x∈supp(αP+(1−α)R(αP + (1 − α)R)(x)u[xl,xu](x) ≥∑
x∈supp(αQ+(1−α)R)(αQ + (1 − α)R)(x)u[xl,xu](x) ⇐⇒ CE(αP + (1 − α)R) ≥ CE(αQ + (1 −

α)R) ⇐⇒ αP + (1− α)R % αQ+ (1− α)R.

Step 2. If a preference relation %⊂ L × L satisfies axioms A1–A4, then for any α, β ∈ (0, 1) and

xl, xu ∈ X : xl < xu, the following holds:

α > β ⇐⇒ αP xu + (1− α)P xl � βP xu + (1− β)P xl . (9)
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No xl xu p CE EV EU DU CPT RngDU
1 0 50 0.10 9.0 5.0 1.1 7.0 7.4 9.0
2 0 50 0.50 21.0 25.0 15.7 18.6 18.7 21.0
3 0 50 0.90 37.0 45.0 41.9 36.3 34.0 37.0
4 0 100 0.05 14.0 5.0 0.7 9.9 10.0 12.5
5 0 100 0.25 25.0 25.0 9.9 22.7 24.6 24.9
6 0 100 0.50 36.0 50.0 31.5 37.3 37.4 36.8
7 0 100 0.75 52.0 75.0 61.9 56.1 52.6 53.0
8 0 100 0.95 78.0 95.0 91.8 80.8 76.9 76.4
9 0 200 0.01 10.0 2.0 0.1 8.6 7.4 8.0

10 0 200 0.10 20.0 20.0 4.3 28.2 29.6 24.6
11 0 200 0.50 76.0 100.0 63.0 74.6 74.8 68.7
12 0 200 0.90 131.0 180.0 167.8 145.2 135.9 140.1
13 0 200 0.99 188.0 198.0 196.7 183.3 180.0 180.5
14 0 400 0.01 12.0 4.0 0.2 17.2 14.9 12.0
15 0 400 0.99 377.0 396.0 393.4 366.5 360.1 377.0
16 50 100 0.10 59.0 55.0 54.4 57.0 59.0 60.1
17 50 100 0.50 71.0 75.0 73.3 68.6 70.5 69.8
18 50 100 0.90 83.0 95.0 94.4 86.3 85.2 83.8
19 50 150 0.05 64.0 55.0 53.9 59.9 62.4 61.7
20 50 150 0.25 72.5 75.0 70.9 72.7 77.7 73.6
21 50 150 0.50 86.0 100.0 94.7 87.3 90.5 86.0
22 50 150 0.75 102.0 125.0 121.1 106.1 105.3 102.8
23 50 150 0.95 128.0 145.0 144.0 130.8 128.4 126.6
24 100 200 0.05 118.0 105.0 104.3 109.9 112.7 115.6
25 100 200 0.25 130.0 125.0 122.4 122.7 128.2 131.4
26 100 200 0.50 141.0 150.0 146.6 137.3 141.1 143.3
27 100 200 0.75 162.0 175.0 172.5 156.1 155.8 158.1
28 100 200 0.95 178.0 195.0 194.4 180.8 178.7 179.2

SSE 6767.3 4785.5 731.1 656.6 266.2

Table 1: Median (for 25 subjects) Certainty Equivalents for 28 prospects involving gains, taken from
Tversky and Kahneman (1992). Each prospect offers xu with probability p and xl with the remaining
probability. For example median Certainty Equivalent for lottery ($0,0.9, $50,0.1) is equal to $9.
Additionally, predicted theoretical values for CE using different estimated models are presented: EV –
Expected Value, EU – Expected Utility: one universal fitted utility function in the whole range [0, 400],
DU – the decision utility model, CPT – the Cumulative Prospect Theory model, RngDU – the range-
dependent utility models. The Sum of Squared Errors (SSE) for each of the model is reported in the last
raw.

Proof. First the =⇒ direction is proved. Within-Range Independence implies that the same axiom holds

with the weak preference relation % replaced by the strict preference relation �. Using Restricted

Monotonicity and the strict version of Within-Range Independence twice, one gets: xu > xl ⇐⇒
P xu � P xl ⇐⇒ P xu � βP xu + (1 − β)P xl ⇐⇒ αP xu + (1 − α)P xl = γP xu + (1 −
γ)(βP xu + (1 − β)P xl) � βP xu + (1 − β)P xl , where γ = α−β

1−β and the last step follows from

1 > α > β =⇒ γ ∈ (0, 1). Hence the RHS of the equivalence in (9) holds.

Next the ⇐= direction is proved. It is proved by contradiction. Suppose α ≤ β. If α = β, then

the RHS of the equivalence in (9) does not hold. If α < β, then the same reasoning as above with the

roles of α and β reversed implies that βP xu + (1 − β)P xl � αP xu + (1 − α)P xl , so the RHS of the
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equivalence in (9) does not hold either. A contradiction.

Step 3. A construction of a strictly increasing and surjective mapping u[xl,xu] : [xl, xu] → [0, 1].

For x ∈ (xl, xu) ⊂ X , xl < xu, consider two sets: {α ∈ (0, 1) : αP xu + (1 − α)P xl � P x},

{α ∈ (0, 1) : αP xu + (1 − α)P xl ≺ P x}. These sets are nonempty by Restricted Monotonicity

and Within-Range Continuity: xu > x > xl ⇐⇒ P xu � P x � P xl =⇒ ∃α, β ∈ (0, 1) :

αP xu + (1 − α)P xl � P x � βP xu + (1 − β)P xl . They are open by Within-Range Continuity and

disjoint by Weak Order. Hence these sets cannot cover (0, 1). There must exist αx ∈ (0, 1) for which

αxP
xu + (1 − αx)P

xl ∼ P x. Step 2 implies that αx ∈ (0, 1) is unique. Suppose it is not. W.l.o.g.

let α1 > α2 such that: P x ∼ α1P
xu + (1 − α1)P

xl ∼ α2P
xu + (1 − α2)P

xl . By step 2, it holds

that: α1P
xu + (1 − α1)P

xl � α2P
xu + (1 − α2)P

xl , which violates transitivity and hence Weak

Order. Additionally, αxl
= 0 and αxu = 1 since P xl ∼ αxl

P xu + (1 − αxl
)P xl only if αxl

= 0 and

P xu ∼ αxuP
xu + (1− αxu)P

xu only if αxu = 1 by step 2.

Define the following mapping u[xl,xu] : [xl, xu] → [0, 1], such that u[xl,xu](x) = αx, where P x ∼
αxP

xl + (1 − αx)P
xl . By Restricted Monotonicity and Within-Range Continuity (and the reasoning

above) this mapping is strictly increasing and surjective. Hence it is also continuous. It follows that there

exists an inverse mapping u−1
[xl,xu]

: [0, 1] → [xl, xu], which is also strictly increasing and surjective.

Step 4. The CE representation of a nondegenerate lottery.

Any nondegenerate lottery P ∈ L can be written in the following way: P = p1P
x1 + p2P

x2 +

... + pnP
xn , where {x1, x2, ..., xn} = supp(P ), xi < xj , for i < j, i, j ∈ {1, 2, ..., n}, i 6= j,

pi > 0, i ∈ {1, 2, ..., n},
∑n

i=1 pi = 1 and n ≥ 2 is a finite natural number. The range of this lottery is

equal to [x1, xn]. By Step 3 for each element of the support xi ∈ supp(P ), i ∈ {1, ..., n}, there exists

a unique number αi, such that P xi ∼ αiP
xn + (1− αi)P

x1 . Note that α1 = 0 and αn = 1. Define

a sequence of lotteries {Pi}i∈{0,1,...,n−2}, such that: P0 = P , Pi =
(
p1 +

∑i+1
j=2 pj(1− αj)

)
P x1 +∑n−1

j=i+2 P
xj +

(
pn +

∑i+1
j=2 pjαj

)
P xn , for i = 1, 2, ..., n − 2. Observe that Pn−2 =

∑n
j=1 pj(1 −

αj)P
x1 +

∑n
j=1 pjαjP

xn =
(
1−

∑n
j=1 pjαj

)
P x1 +

∑n
j=1 pjαjP

xn . Define another sequence of

lotteries {Qi}i=0,1,...,n−3, such that: Qi(x) = 0, if x = xi+2, and Qi(x) =
Pi(x)
1−pi+2

, if x 6= xi+2. The

lottery Pi can thus be written as Pi = pi+2P
xi+2 + (1− pi+2)Qi, for i = 0, 1, ..., n− 3.

Within-Range Independence applied twice (second time with the roles of P,Q switched) implies

that the same axiom holds with the weak preference relation % replaced by the indifference relation ∼,

i.e. for any interval [xl, xu] ⊂ X , xl < xu, for every R,S, T ∈ L, such that αR + (1 − α)T, αS +

(1 − α)T ∈ Lc
[xl,xu]

, for all α ∈ (0, 1] the following holds: R ∼ S ⇐⇒ αR + (1 − α)T ∼
αS + (1 − α)T, ∀α ∈ [0, 1]. For i = 0, 1, ..., n − 3, apply this version of the axiom with α = pi+2,

R = P xi+2 , S = (1 − αi+2)P
x1 + αi+2P

xn , T = Qi, to get Pi ∼ Pi+1. Note that R,S, T satisfy

conditions of the axiom, i.e. they are either nondegenerate lotteries with the same range [x1, xn] or

degenerate lotteries with support in the interval [x1, xn]. Axiom 1 (transitivity of %) applied twice

implies that ∼ is transitive as well. Applying transitivity of ∼ finitely many times we get: P ≡ P0 ∼
P1 ∼ ... ∼ Pn−2 = (1−

∑n
i=1 piαi)P

x1 +
∑n

i=1 piαiP
xn . All the lotteries in this sequence have the

same range equal to [x1, xn]. Define a mapping u[x1,xn] : [xl, xn] → [0, 1], such that: u[x1,xn](xi) =

αi, for i = 1, 2, ..., n. Step 3 implies that there exists an inverse mapping u−1
[x1,xn]

and after defining

CE(P ) = u−1
[xl,xu]

(∑n
i=1 piu[xl,xu](xi)

)
it follows that P ∼ PCE(P ).
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Step 5. Two nondegenerate lotteries’ comparison via the certainty equivalents.

By Weak Order and Restricted Monotonicity any two nondegenerate lotteries P1, P2 can be com-

pared using CE defined in a previous step: P1 % P2 ⇐⇒ CE(P1) ≥ CE(P2).

Step 6. The comparison involving degenerate lotteries.

It remains to be showed, that in case one or two of the lotteries being compared are degenerate, one

can replace the corresponding side of the inequality in (1) by its one-element support. If both lotteries

are degenerate, i.e. P = P x, Q = P y, Restricted Monotonicity states that they are represented by

their one-element support P � Q ⇐⇒ x > y. If only one is degenerate P = P x and the other

nondegenerate Q ∈ L \ Ld with range [xl, xu] ⊂ X , xl < xu, then there are three cases: a) if x ≥ xu,

then P x % P xu � Q, by Restricted Monotonicity and Independence, and hence P x � Q, by Weak

Order; b) similarly if x ≤ xl, then P x - P xl ≺ Q, and hence P x ≺ Q; c) if x ∈ (xl, xu), then

Q ∼ PCE(Q), where CE(Q) is defined as in the RHS of (1), and by Restricted Monotonicity and Weak

Order P x % Q ⇐⇒ x ≥ CE(Q).

Step 7. Uniqueness of u[xl,xu].

The argument is the same as in demonstrating cardinal uniqueness of a von Neumann Morgenstern

utility function in the Expected Utility Theorem. But since we require that the convex hull of the image

of u[xl,xu] is equal to [0, 1], then we have uniqueness instead of cardinal uniqueness. This finishes the

proof.

Proof of Theorem 2

Step 1. If axioms 1-4 hold, then Axiom 5 is equivalent to the following condition:

CE(Pα,β) = αCE(P ) + β, ∀P ∈ L, ∀α > 0, β ∈ R : Pα,β ∈ L. (10)

(⇐) Suppose that (10) holds. By the definition of a certainty equivalent PCE(P ) ∼ P , for any

P ∈ L. Hence:

P % Q ⇐⇒ PCE(P ) % PCE(Q) by transitivity of %

⇐⇒ CE(P ) ≥ CE(Q) by A4

⇐⇒ αCE(P ) + β ≥ αCE(Q) + β, ∀α > 0, β ∈ R

⇐⇒ CE(Pα,β) ≥ CE(Qα,β) by (14)

⇐⇒ PCE(Pα,β) % PCE(Qα,β) by monotonicity

⇐⇒ Pα,β % Qα,β by transitivity

and hence Axiom 5 holds as well.

(⇒): By theorem 1, axioms 1–4 imply that for every interval [xl, xu] ⊂ X, xl < xu there exists a

unique strictly increasing and surjective function u[xl,xu] : [xl, xu] → [0, 1], such that for any nondegen-

erate lottery P ∈ L, the following holds: P ∼ CE(P ), where CE(P ) = u−1
[xl,xu]

[∑
x∈supp(P ) P (x)u[xl,xu](x)

]
.

Take any two nondegenerate lotteries with the same range, i.e. P,Q ∈ L[xl,xu], for some [xl, xu] ⊂ X ,
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xl, x. Since they have the same range and u[xl,xu] is strictly increasing, then by representation (1) it

holds:

P % Q ⇐⇒
∑

x∈supp(P )

P (x)u[xl,xu](x) ≥
∑

x∈supp(Q)

Q(x)u[xl,xu](x) (11)

Similarly for any α > 0 and β ∈ R it holds:

Pα,β % Qα,β ⇐⇒
∑

x∈supp(Pα,β)

Pα,β(x)u[αxl+β,αxu+β](x) ≥
∑

x∈supp(Qα,β)

Qα,β(x)u[αxl+β,αxu+β](x)

⇐⇒
∑

x∈supp(P )

P (x)u[αxl+β,αxu+β](αx+ β) ≥
∑

x∈supp(Q)

Q(x)u[αxl+β,αxu+β](αx+ β)

(12)

where equivalence is obtained by changing variables and using the definition of Pα,β , Qα,β . By axiom

5, it is the case that there is infinitely many utility functions that can be used to represent P % Q: not

only u[xl,xu] as in (11) but also u[αxl+β,αxu+β] for any α > 0, β ∈ R as in (12). By theorem 1 the utility

function used to represent lotteries in L[xl,xu] is unique. So it must be that:

u[xl,xu](x) = u[αxl+β,αxu+β](αxl + β), for x ∈ [xl, xu] (13)

It follows that the LHS of (11) and the LHS of (12) must be equal. And the same for RHS. Applying the

inverse of u[αxl+β,αxu+β] on the LHS of (12) one obtains CE(Pα,β), whereas applying the inverse of

u[xl,xu] on the LHS of (11) results in CE(P ). By (13) it must be the case that CE(Pα,β) = αCE(P )+β.

Step 2. Necessity of the axioms.

The representation given in (2) is a special case of the representation given in (1). Hence it satisfies

Axioms 1–4. In what follows we show that it also satisfies axiom 5. Representation (2) implies that:

CE(Pα,β) = αxl + β + α(xu − xl)D
−1

 ∑
x∈supp(Pα,β)

Pα,β(x)D

(
x− αxl − β

α(xu − xl)

)
= α

xl + (xu − xl)D
−1

 ∑
x∈supp(P )

Pα,β(αx+ β)D

(
x− xl
xu − xl

)+ β

= αCE(P ) + β (14)

where the second equality follows from changing variables and the third from the definition of Pα,β . By

direction (⇐) of Step 1 it follows that A5 is satisfied.

Step 3. Sufficiency of the axioms.

If one of the lotteries being compared is degenerate then refer to Step 6 of the proof of Theorem 1.

In what follows we assume a nondegenerate lottery. Consider lottery P with range equal to [xl, xu] ⊂
X , xl < xu. Define α = 1

xu−xl
, β = − xl

xu−xl
. Since it is assumed that [0, 1] ⊂ X , so Pα,β ∈

L. Define the following mapping D : [0, 1] → [0, 1], such that u[xl,xu](x) =: D
(

x−xl
xu−xl

)
for all

x ∈ [xl, xu]. By Theorem 1 and the reasoning in direction ⇒ of Step 1 D is unique and by Axiom
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5 it my be used to represent preferences over lotteries with any range. Hence: Pα,β ∼ PCE(Pα,β),

where CE(Pα,β) = D−1
[∑

x∈supp(Pα,β)
Pα,β(x)D (x)

]
. Change the variable under the summation

from x to αx + β and use the fact that Pα,β(αx + β) = P (x), for all x ∈ X , to get CE(Pα,β) =

D−1
[∑

x∈supp(P ) P (x)D (αx+ β)
]
. On the other hand, by Axiom 5 and Step 1 of the proof, the

following holds: CE(P ) = 1
αCE(Pα,β)− β

α = xl+(xu−xl)D
−1

[∑
x∈supp(P ) P (x)D

(
x−xl
xu−xl

)]
This

finishes the proof.

Proof of Lemma 1

Point a) is proved first. The following differential equation needs to be solved: −D′′(x)x
D′(x) = c, where c is

a constant, and D satisfies D(0) = 0 and D(1) = 1. The only solution to this equation is D(x) = xα,

where α > 0 and α := 1− c. Point b) is proved next. By point a) above function C takes the following

form: C(x) = xβ , where β > 0. By definition of C, D must be of the form: D(x) = 1 − (1 − x)β ,

where β > 0 as claimed.

Proof of Theorem 3

Step 1. The case of lotteries comparable within one range.

For any interval [xl, xu] ⊂ X , xl < xu and for all lotteries in the set Lc
[xl,xu]

, the decision utility

model with the decision utility function D is equivalent to the expected utility model with a strictly

increasing utility function u, such that u(x) = D
(

x−xl
xu−xl

)
, ∀x ∈ [xl, xu]. As is well known, the

Certainty Equivalent functional of this model is monotonic wrt FOSD and continuous. Hence to ensure

monotonicity and continuity one needs to check lotteries with differing ranges.

Step 2. Monotonicity for upward and downward range-changing shift of probability mass.

Any lottery payoff y which dominates a given lottery payoff x wrt FOSD can be constructed from

x by a series of shifts of probability mass from x ∈ supp(x) to a point y > x. Only shifts for which

probability mass is shifted to a point y > max supp(x) change the lottery range. Similarly any lottery

y which is dominated by a given lottery payoff x can be constructed from x by a series of probability

mass shifts from x ∈ supp(x) to a point y < x. Only shifts for which probability mass is shifted to a

point y < min supp(x) change the lottery range. By step 1 and the above reasoning, it is sufficient to

check that monotonicity is satisfied for such a single probability shift: separately for a downward and

separately for an upward shift.

If the original lottery payoff x is degenerate, then shifting some probability mass upwards results in

an increase of the CE value and shifting some probability mass downwards results in a decrease of the

CE value. This is due to the fact that min supp(x) < CE(x) < max supp(x).

Assume that x is nondegenerate. Consider the set of monetary prizes xi ∈ X , i = {0, 1, ..., n+ 1},

where n ≥ 2, such that xi < xj , ∀i < j, i, j ∈ {0, 1, ..., n + 1}. Any nondegenerate lottery payoff

x ∈ Lp with range equal to [x1, xn] can be written as: x = (x1, p1;x2, p2; ...;xn, pn), such that pi > 0

for all i ∈ {1, 2, ..., n} and
∑

i∈{1,2,...,n} pi = 1. Define two sequences of lottery payoffs (xup
m )m∈N,
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(xdo
m )m∈N as in the following table:

x0 x1 x2 ... xn xn+1 range

x 0 p1 p2 ... pn 0 [x1, xn]

xup
m 0 p1 p2 ... m

m+1pn
1

m+1pn [x1, xn+1]

xdo
m

1
m+1p1

m
m+1p1 p2 ... pn 0 [x0, xn]

The sequences represent, respectively, the upward and downward range-changing shift in probability

mass constructed from x which were described above.9

Note that Rng(xup
m ) = [x1, xn+1] and Rng(xdo

m ) = [x0, xn]. Since for 1 < m′ < m′′ it holds that

xup
m′ �FOSD xup

m′′ , therefore by step 1 one obtains CE(xup
m′) > CE(xup

m′′). Hence it is both necessary

and sufficient to check monotonicity conditions for the limiting case when m tends to ∞, i.e. to check

whether the following holds: CE(x) ≤ lim
m→∞

CE(xup
m ). Similarly, since for 0 < m′ < m′′ it holds that

xdo
m′′ �FOSD xdo

m′ , therefore by step 1 one obtains CE(xdo
m′′) > CE(xdo

m′). Hence it is both necessary

and sufficient to check monotonicity conditions for the limiting case when m tends to ∞, i.e. to check

whether the following holds: lim
m→∞

CE(xdo
m ) ≤ CE(x).

Step 3. For all nondegenerate lottery payoffs x and the lottery payoff sequences (xup
m )m∈N, (x

do
m )m∈N

defined in Step 2, the following holds: CE(x) ≤ limm→∞CE(xup
m ) ⇐⇒ RRAD(x) nondecreasing

∀x ∈ [0, 1], and limm→∞CE(xdo
m ) ≤ CE(x) ⇐⇒ RRAC(x) nondecreasing ∀x ∈ [0, 1].

The first equivalence is proved first. Let D be the decision utility function representing the decision

maker’s preferences. Assume that a lottery payoff x and a prize xn+1 are defined as in Step 2 but

otherwise are arbitrary. Define two functions D1, D2 : [0, 1] → [0, 1], such that D1(yi) = D(yi),

D2(yi) = D(λyi), where yi = xi−x1
xn−x1

, for i ∈ {1, ..., n} and λ = xn−x1
xn+1−x1

. We can treat these two

functions as two vNM utility functions restricted to the interval [0, 1]. Thus we can apply the Pratt

(1964) theorem of comparative relative risk aversion. Since λ ∈ (0, 1), the following holds:

RRAD(·) nondecreasing

⇐⇒ RRAD1(x) ≥ RRAD2(x), ∀x ∈ [0, 1]

⇐⇒ D−1
1

[
ED1

(
x− x1
xn − x1

)]
≤ D−1

2

[
ED2

(
x− x1
xn − x1

)]
⇐⇒ D−1

[
ED

(
x− x1
xn − x1

)]
≤ 1

λ
D−1

[
ED

(
λ
x− x1
xn − x1

)]
⇐⇒ x1 + (xn − x1)D

−1

[
ED

(
x− x1
xn − x1

)]
≤ x1 + (xn+1 − x1)D

−1

[
ED

(
x− x1

xn+1 − x1

)]
⇐⇒ CE(x) ≤ lim

m→∞
CE(xup

m )

where the second equivalence is implied by Pratt (1964) theorem of comparative relative risk aversion,

the third by the definition of D1, D2, and the last one by the definition of (xup
m )m∈N.

The second equivalence is proved similarly. Assume that a lottery payoff x and a prize x0 are

defined as in Step 2 but otherwise are arbitrary. Define two functions C1, C2 : [0, 1] → [0, 1], such that:

9For the argument presented here, it does not matter from which element of the support of x the probability mass is taken
away to be shifted upwards or downwards. It is assumed that they are taken away from xn in the case of an upward shift and
from x1 in the case of a downward shift.
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C1(yi) = C(yi), C2(yi) = C(λyi), where yi =
xn−xi
xn−x1

, for i ∈ {1, ..., n}, and λ = xn−x1
xn−x0

. We can treat

these two functions as two vNM utility functions restricted to the interval [0, 1]. Since λ ∈ (0, 1), the

following holds:

RRAC(·) nondecreasing

⇐⇒ RRAC1(x) ≥ RRAC2(x), ∀x ∈ [0, 1]

⇐⇒ C−1
1

[
EC1

(
xn − x

xn − x1

)]
≤ C−1

2

[
EC2

(
xn − x

xn − x1

)]
⇐⇒ C−1

[
EC

(
xn − x

xn − x1

)]
≤ 1

λ
C−1

[
EC

(
λ
xn − x

xn − x1

)]
=

xn − x0
xn − x1

C−1

[
EC

(
xn − x

xn − x0

)]
⇐⇒ xn − (xn − x0)C

−1

[
EC

(
xn − x

xn − x0

)]
≤ xn − (xn − x1)C

−1

[
EC

(
xn − x

xn − x1

)]
⇐⇒ x0 + (xn − x0)D

−1

[
ED

(
x− x0
xn − x0

)]
≤ x1 + (xn − x1)D

−1

[
ED

(
x− x1
xn − x1

)]
⇐⇒ lim

m→∞
CE(xdo

m ) ≤ CE(x)

where the second equivalence is implied by Pratt (1964) theorem of comparative relative risk aversion,

the third by the definition of C1, C2, the fifth by condition (3), and the last one by the definition of

(xdo
m )m∈N. This finishes the proof of monotonicity.

Step 4. Continuity for lotteries which are not comparable within the same range.

Consider any lottery payoff x ∈ Lp with the distribution P ∈ L. Define a sequence of lottery

payoffs (xm)m∈N, where each lottery payoff xm ∈ Lp has distribution Pm ∈ L, m ∈ N, such that

xm
d−→ x. Define: lim

m→∞
min supp(xm) = x′l and lim

m→∞
max supp(xm) = x′u. If lottery payoff x is

degenerate with P (x∗) = 1, for some x∗ ∈ R, then x∗ ∈ [x′l, x
′
u] and therefore: limm→∞CE(xm) =

x′l + (x′u − x′l)D
−1

(
D

(
x∗−x′

l
x′
u−x′

l

))
= x∗ = CE(x), and hence for such lottery payoffs continuity is

satisfied.

If lottery payoff x is nondegenerate, there are four cases to be considered, depending on the change

of range of the limit of the sequence of lottery payoffs relative to the range of x:

a) x′l = xl, x′u = xu (the range remains the same): Then by step 1 the CE functional is continuous,

i.e. limm→∞CE(xm) = CE(x).

b) x′l = xl, x′u > xu (upward range change): Then since xm converges in distribution to x, the

following holds: limm→∞ Pm(x) = P (x), for all x ∈ supp(x) and limm→∞ Pm(x) = 0, for

all x /∈ supp(x). It follows that: CE(x) = xl + (xu − xl)D
−1

(∑
x∈supp(x) P (x)D

(
x−xl
xu−xl

))
,

and: lim
m→∞

CE(xm) = xl + (x′u − xl)D
−1

(∑
x∈supp(x) P (x)D

(
x−xl
x′
u−xl

))
= xl + (xu − xl)

1
λ

D−1
(∑

x∈supp(x) P (x)D
(
λ x−xl
xu−xl

))
, where λ = xu−xl

x′
u−xl

∈ (0, 1). Define r = x−xl
xu−xl

and sup-

pose the vNM utility function on the set of such relative lotteries is D. Then lim
m→∞

CE(xm) =

CE(x) if and only if CE(λr) = λCE(r) for λ > 0. By Pratt (1964) theorem of comparative

relative risk aversion the latter holds true if and only if the utility function D exhibits CRRA. By

Lemma 1 this is the case iff D(x) = xα, where α > 0 for x ∈ [0, 1].

c) x′l < xl, x′u = xu (downward range change): This time it is more convenient to use the CE

representation via function C, which is given by (3). Then by a similar argument as in b) the
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following holds: lim
m→∞

CE(xm) = xu − (xu − x′l)C
−1

(∑
x∈supp(x) P (x)C

(
xu−x
xu−x′

l

))
= xu −

(xu−xl)
1
γC

−1
(∑

x∈supp(x) P (x)C
(
γ xu−x
xu−xl

))
, where γ = xu−xl

xu−x′
l
∈ (0, 1). Similarly as in step

b), define r = x−xl
xu−xl

and suppose the vNM utility function on the set of such relative lotteries is

C. Then lim
m→∞

CE(xm) = CE(x) if and only if CE(γr) = γCE(r) for γ > 0. By Pratt (1964)

theorem of comparative relative risk aversion the latter holds true if and only if the utility function

C exhibits CRRA. By Lemma 1 this is the case iff C(x) = xα, where α > 0 for x ∈ [0, 1]. This

is, in turn, equivalent to: D(x) = 1− (1− x)α, α > 0 for x ∈ [0, 1].

d) x′l < xl, x′u > xu (upward and downward range change): Then by a similar argument as in b),

the following holds: lim
m→∞

CE(xm) = x′l + (x′u − x′l)D
−1

(∑
x∈supp(x) P (x)D

(
x−x′

l
x′
u−x′

l

))
=

xl + (xu − xl)
[
1
αD

−1
(∑

x∈supp(x) P (x)D
(
α x−xl

xu−xl
+ β

))
− β

α

]
, where α = xu−xl

x′
u−x′

l
∈ (0, 1)

and β =
xl−x′

l
x′
u−x′

l
> 0. Similarly as in step b), define r = x−xl

xu−xl
and suppose the vNM utility

function on the set of such relative lotteries is D. Then lim
m→∞

CE(xm) = CE(x) if and only if

CE(αr+ β) = αCE(r) + β for α > 0, β ∈ R. By Pratt (1964) theorem of comparative relative

risk aversion the latter holds true if and only if the utility function D exhibits CARA and CRRA

at the same time. This is, in turn, equivalent to D being linear, i.e. D(x) = x, for x ∈ [0, 1].

This finishes the proof of continuity.
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