1 Sources of uncertainty and the ambiguity triangle

2 Setup

There is an outcome space $X \subseteq \mathbb{R}$ and a set of states S. We assume that S covers all possible sources of uncertainty. An event E is any subset of S. Let \mathcal{S} be a σ-algebra of events. An act is a mapping $f: S \rightarrow X$. The set of all acts is denoted by F. There is a (binary) preference relation \succsim over the set of acts.

In this paper we focus on the following simple setup. An urn with white and black balls inside is given. We assume that \mathbb{N} is the set of natural numbers containing zero. Let $n \in \mathbb{N}$ be the number of all balls in the urn. Let $b, w \in \mathbb{N}$, such that $b+w \leq n$ be the number of known black and white balls in the urn, respectively. Let $W_{(b, w)} \in \mathcal{S}$ be the event of drawing a white a ball from an urn with b known black balls and w known white balls. Similarly let $B_{(b, w)} \in \mathcal{S}$ be the event of drawing a white ball from an urn with b known black balls and w known white balls. We assume after Chew, Sagi (2008) that a given source of uncertainty is a collection of events which forms a partition of a state space. From now on we assume that the overall number of balls n in the urn is fixed. Thus $\left\{W_{(b, w)}, B_{(b, w)}\right\}$, where $b, w \in \mathbb{N}$, such that $b+w \leq n$ is a source of uncertainty. The set of all sources of uncertainty in our setup will be denoted by \mathcal{U}. We thus have $\frac{1}{2}(n+1)^{2}$ number of possible sources of uncertainty.

Given a source of uncertainty $\left\{W_{(b, w)}, B_{(b, w)}\right\} \in \mathcal{U}$ we will denote a typical (ambiguous) prospect as $\left(x, W_{(b, w)} ; y, B_{(b, w)}\right)$, where $x, y \in X$. The interpretation is the following: if I draw a white ball from the urn containing n white or black balls in which I know that b are black and w are white and the colors of the remaining balls are unknown to me then I get x as a prize. If from the same urn I draw a black ball, then I get y as a prize. Each source of uncertainty corresponds to a different ambiguous prospect. A prospect is defined as an urn with n balls overall, in which the number w of white and the number b of black balls are known to a decision maker, while whether the color of each of the $n-b-w$ remaining balls is white or black remains unknown.

For a fixed overall number of balls in the urn n we define an ambiguity triangle as the set of all sources of uncertainty (ambiguous prospects) in the possible (b, w) space, i.e.

$$
\Delta_{A}=\left\{(b, w) \in \mathbb{N}^{2} \mid b+w \leq n\right\}
$$

We can normalize the ambiguity triangle so that it is expressed in terms of lower probabilities (Walley, 1982) of drawing a black or a white ball (denoted
by \underline{p}_{b} and \underline{p}_{w}, respectively):

$$
\Delta_{A}^{\prime}=\left\{\left(\underline{p}_{b}, \underline{p}_{w}\right) \in \mathbb{Q}^{2} \mid \underline{p}_{b}+\underline{p}_{w} \leq 1\right\}
$$

where $\underline{p}_{b}=\frac{b}{n}$ and $\underline{p}_{w}=\frac{w}{n}$.
The true probability of drawing a white ball p_{w} belongs to the interval [$\left.\underline{p}_{w}, \bar{p}_{w}\right]$, where \underline{p}_{w} denotes the lower probability of drawing a white ball while \bar{p}_{w} denotes the upper probability of drawing a white ball. We assume that the set of priors C is the the set of all probabilities lying between the corresponding lower and upper probability.

2.1λ-maxmin criterion

Let \succsim satisfy the Ghirardato, Maccheroni, and Marinacci (2004) axioms. Then $f \succsim g$ if and only if:

$$
(1-\lambda) \min _{p \in C} \mathbb{E}_{p} u(f)+\lambda \max _{p \in C} \mathbb{E}_{p} u(f) \geq(1-\lambda) \min _{p \in C} \mathbb{E}_{p} u(g)+\lambda \max _{p \in C} \mathbb{E}_{p} u(g)
$$

where $\lambda \in[0,1]$ and C the set of priors are uniquely defined and u is unique up to a strictly positive affine transformation.

Several examples:

1. Let $f:=\left(x_{u}, W_{(0,0)} ; x_{l}, B_{(0,0)}\right)$, where x_{u}, x_{l}, such that $x_{u}>x_{l}$ be a winning and a losing prize, respectively. Such a prospect corresponds to complete ignorance (out of n balls no color is known). Then the probability of drawing a white ball p_{w} is between 0 (the lower probability) and 1 (the upper probability). Hence the representation functional becomes:

$$
(1-\lambda) \min _{p_{w} \in[0,1]} \mathbb{E} u(f)+\lambda \max _{p_{w} \in[0,1]} \mathbb{E} u(f)=(1-\lambda) u\left(x_{l}\right)+\lambda u\left(x_{u}\right)
$$

which is the Hurwicz rule.
2. Let $f:=\left(x_{u}, W_{(b, w)} ; x_{l}, B_{(b, w)}\right)$, where $x_{l}, x_{u}, x_{u}>x_{l}$, are the winning and a loosing prize, respectively, and $b+w<n$. Such a prospect corresponds to partial ignorance (out of n balls the color of fewer than n balls is known). Then the probability of drawing a white ball p_{w} is between $\frac{w}{n}$ (the lower probability) and $\frac{n-b}{n}$ (the upper probability). W.l.o.g. we assume that $u\left(x_{l}\right)=0$. Hence the representation functional becomes:

$$
\begin{aligned}
& (1-\lambda) \min _{p_{w} \in\left[\frac{w}{n}, \frac{n-b}{n}\right]} \mathbb{E} u(f)+\lambda \max _{p_{w} \in\left[\frac{w}{n}, \frac{n-b}{n}\right]} \mathbb{E} u(f) \\
& =\left((1-\lambda) \frac{w}{n}+\lambda \frac{n-b}{n}\right) u\left(x_{u}\right)+\left((1-\lambda) \frac{n-w}{n}+\lambda \frac{b}{n}\right) u\left(x_{l}\right) \\
& =\left((1-\lambda) \underline{p}_{w}+\lambda \bar{p}_{w}\right) u\left(x_{u}\right)
\end{aligned}
$$

3. Let $f:=\left(x_{u}, W_{(b, w)} ; x_{l}, B_{(b, w)}\right)$, where $x_{l}, x_{u}, x_{u}>x_{l}$, are the winning and a loosing prize, respectively, and $b+w=n$. Such a prospect corresponds to the situation of risk (no uncertainty) since the color of all balls in the urn is known. Then the probability of drawing a white ball p_{w} equals $\frac{w}{n}$. The representation functional then becomes:

$$
\begin{array}{r}
\mathbb{E} u(f)=\frac{w}{n} u\left(x_{u}\right)+\frac{n-w}{n} u\left(x_{l}\right) \\
p_{w} u\left(x_{u}\right)+\left(1-p_{w}\right) u\left(x_{l}\right)
\end{array}
$$

which is the vNM Expected Utility.

3 Ghirardato, Maccheroni, Marinacci (2004) with set of priors in the core and Subjective Expected Utility.

Let $f:=\left(x_{1}, E_{1} ; \ldots ; x_{n}, E_{n}\right) \in F$, where $x_{i}<x_{j}$, for $i<j, i, j \in\{1, \ldots, n\}$. Let $p_{f}: X \rightarrow[0,1]$ be the induced probability distribution of f, i.e. $p_{f}(x)=$ $\sum_{s \in S, f(s)=x} p(s)$. This induced probability distribution is imperfectly known.

Proposition 3.1. Let the set of probabilities C be given by

$$
C:=\left\{p \in[0,1]^{n}: \underline{p}_{i} \leq p_{i} \leq \bar{p}_{i}, i \in\{1, \ldots, n\}\right\}
$$

where \underline{p}_{i} is the lower probability of E_{i} and \bar{p}_{i} is the upper probability of E_{i}. Then the GMM preference functional becomes:

$$
(1-\lambda) \min _{p \in C} \mathbb{E}_{p} u(f)+\lambda \max _{p \in C} \mathbb{E}_{p} u(f)=\mathbb{E}_{\pi} u(f)
$$

where $\pi: \mathcal{S} \rightarrow[0,1]$ is the subjective probability defined as follows:

$$
\begin{aligned}
& \pi\left(E_{1}\right)=\underline{p}_{1}+(1-\lambda)\left(1-\sum_{i} \underline{p}_{i}\right) \\
& \pi\left(E_{i}\right)=\underline{p}_{i}, \quad i \in\{2, \ldots, n-1\} \\
& \pi\left(E_{n}\right)=\underline{p}_{n}+\lambda\left(1-\sum_{i} \underline{p}_{i}\right)
\end{aligned}
$$

3.1 General formulation

We now proceed to a more general formulation with the set of probabilities C being the core of a totally monotone capacity.

Let S be a finite state space and \mathcal{S} be an algebra of subsets of S, called events. A function $v: \mathcal{S} \rightarrow[0,1]$ is a capacity if it satisfies the following three conditions:
a) $v(\emptyset)=0$,
b) $v(S)=1$,
c) $A \subseteq B \Rightarrow v(A) \leq v(B)$, for $A, B \in \mathcal{S}$.

Condition c) is referred to as monotonicity (wrt to set inclusion). We will henceforth assume that the capacity v is defined on the algebra \mathcal{S} and consider only the events that belong to \mathcal{S}.

A capacity on \mathcal{S} is \mathbf{k}-monotone $(k \geq 2)$ if for any family of k-subsets A_{1}, \ldots, A_{k} of S, it holds:

$$
v\left(\cup_{i \in K} A_{i}\right) \geq \sum_{I \subseteq K, I \neq \emptyset}(-1)^{|I|+1} v\left(\cap_{i \in I} A_{i}\right)
$$

where $K:=\{1, \ldots, k\}$. A capacity is totally monotone if it is k-monotone for every $k \geq 2$.

Möbius transform of v is a function $m: \mathcal{S} \rightarrow \mathbb{R}$ defined by:

$$
m(A)=\sum_{B \subseteq A}(-1)^{|A \backslash B|} v(B), \quad A \subseteq S
$$

Conversely, Möbius transform m uniquely characterizes v because:

$$
v(A)=\sum_{B \subseteq A} m(B), \quad A \subseteq S
$$

A Möbius transform m satisfies: $m(\emptyset)=0, \sum_{A \subseteq S} m(A)=1$. If it also satisfies $m(A) \geq 0$, for $A \subseteq S$, then it is called a mass allocation function. Given a mass allocation function m, the corresponding unique capacity is called a belief function b.

Shafer (1976) has shown that a capacity is totally monotone if and only if it is a belief function.

Let $f:=\left(x_{1}, E_{1} ; \ldots ; x_{n}, E_{n}\right) \in F$, where $x_{i}<x_{j}$, for $i<j, i, j \in\{1, \ldots, n\}$. To avoid unnecessary complication we assume that \mathcal{S} is an algebra induced by the partition $\left\{E_{1}, \ldots, E_{n}\right\}$ of S. We assume that v is a totally monotone capacity on \mathcal{S}. It represents the decision maker's knowledge about \mathcal{S}. Let $\operatorname{Core}(v)$ denote the set of all probability measures consistent with the decision maker's knowledge v. It is defined as a probability measure p such that $p(A) \geq v(A)$,
for all $A \subset S$ and $p(S)=v(S)$. For any $E \in \mathcal{S}$, we define $\underline{p}(E)=v(E)=m(E)$ as a lower probability of E. For any $S \in \mathcal{S}$, we define $\bar{p}(E)=\sum_{A \supseteq E} m(A)$ as the upper probability of E. The lower/upper probability of E is interpreted as the lowest/highest possible probability value that can be assigned to the event E that is consistent with the decision maker's knowledge v. Let $B_{i}:=E_{1} \cup \ldots \cup E_{i}$, $G_{i}:=E_{i} \cup \ldots \cup E_{n}$, for $i=1, \ldots, n$ denote the "get at least as Bad as x_{i} " and "get at least as Good as x_{i} " events, respectively.

Proposition 3.2. For a totally monotone capacity v, the following holds:

$$
\min _{p \in \text { Core }(v)} \mathbb{E}_{p} u(f)=\mathbb{E}_{\pi} u(f)
$$

where $\pi\left(E_{i}\right)=v\left(G_{i}\right)-v\left(G_{i+1}\right)$, for $i \in\{1, \ldots, n-1\}, \pi\left(E_{n}\right)=v\left(G_{n}\right)=v\left(E_{n}\right)$.
Proof. Since we are minimizing $\mathbb{E}_{p} u(f)$ over probability measures $p \in \operatorname{Core}(v)$, we want to assign the highest possible probability in the core of v to the event E_{1} with the lowest prize x_{1}. Hence

$$
\begin{aligned}
\pi\left(E_{1}\right)=\bar{p}\left(E_{1}\right) & =\sum_{A \supseteq E_{1}} m(A) \\
& =\sum_{A \subseteq G_{1}} m(A)-\sum_{A \subseteq G_{2}} m(A) \\
& =1-v\left(G_{2}\right)
\end{aligned}
$$

Out of the remaining $1-\pi\left(E_{1}\right)=\sum_{A \subseteq G_{2}} m(A)$ probability mass we assign as much as possible to the event E_{2}. Continuing this way to each event $E_{i}, i \in$ $\{1, \ldots, n-1\}$ we assign:

$$
\begin{aligned}
\pi\left(E_{i}\right) & =\sum_{E_{i} \subseteq A \subseteq G_{i}} m(A) \\
& =\sum_{A \subseteq G_{i}} m(A)-\sum_{A \subseteq G_{i+1}} m(A) \\
& =v\left(G_{i}\right)-v\left(G_{i+1}\right)
\end{aligned}
$$

Finally, to the best event E_{n} we assign the lower probability of E_{n} :

$$
\begin{aligned}
\pi\left(E_{n}\right) & =\sum_{E_{n} \subseteq A \subseteq G_{n}} m(A) \\
& =v\left(G_{n}\right)=v\left(E_{n}\right)=\underline{p}\left(E_{n}\right)
\end{aligned}
$$

Proposition 3.3. For a totally monotone capacity v, the following holds:

$$
\max _{p \in \operatorname{Core}(v)} \mathbb{E}_{p} u(f)=\mathbb{E}_{\pi^{\prime}} u(f)
$$

where $\pi^{\prime}\left(E_{i}\right)=v\left(B_{i}\right)-v\left(B_{i-1}\right)$, for $i \in\{2, \ldots, n\}, \pi^{\prime}\left(E_{1}\right)=v\left(B_{1}\right)=v\left(E_{1}\right)$

Proof. The proof is very similar to the proof of Proposition 3.2. We assign probability mass recursively in the following way: assign the highest possible probability in the core of v to the event E_{n} with the highest prize x_{n} :

$$
\begin{aligned}
\pi^{\prime}\left(E_{n}\right)=\bar{p}\left(E_{n}\right) & =\sum_{A \supseteq E_{n}} m(A) \\
& =\sum_{A \subseteq B_{n}} m(A)-\sum_{A \subseteq B_{n-1}} m(A) \\
& =1-v\left(B_{n-1}\right)
\end{aligned}
$$

Out of the remaining $1-\pi^{\prime}\left(E_{n}\right)=\sum_{A \subseteq B_{n-1}} m(A)$ probability mass we assign as much as possible to the event E_{n-1}. Continuing this way to each event E_{i}, $i \in\{2, \ldots, n\}$ we assign:

$$
\begin{aligned}
\pi^{\prime}\left(E_{i}\right) & =\sum_{E_{i} \subseteq A \subseteq B_{i}} m(A) \\
& =\sum_{A \subseteq B_{i}} m(A)-\sum_{A \subseteq B_{i-1}} m(A) \\
& =v\left(B_{i}\right)-v\left(B_{i-1}\right)
\end{aligned}
$$

Finally, to the worst event E_{1} we assign the lower probability of E_{1} :

$$
\begin{aligned}
\pi^{\prime}\left(E_{1}\right) & =\sum_{E_{1} \subseteq A \subseteq B_{1}} m(A) \\
& =v\left(B_{1}\right)=v\left(E_{1}\right)=\underline{p}\left(E_{1}\right)
\end{aligned}
$$

Proposition 3.4. For a totally monotone capacity v and $\lambda \in[0,1]$, the following holds:

$$
\lambda \min _{p \in \operatorname{Core}(v)} \mathbb{E}_{p} u(f)+(1-\lambda) \max _{p \in \operatorname{Core}(v)} \mathbb{E}_{p} u(f)=\mathbb{E}_{\pi^{\prime \prime}} u(f)
$$

where $\pi^{\prime \prime}\left(E_{i}\right)=\pi^{\prime}\left(E_{i}\right)+\lambda\left[\sum_{\substack{A \cap B_{i} \neq \emptyset \\ A \cap B_{i} \neq \emptyset}} m(A)-\sum_{\substack{A \cap B_{i-1} \neq \emptyset \\ A \cap B_{i-1}^{c} \neq \emptyset}} m(A)\right]$, and m is a mass allocation function associated with the capacity v.

Proof. Observe that $B_{i}=G_{i+1}^{c}$, for $i=\{1, \ldots, n-1\}$. Observe further that for any partition $\left\{B_{i}, B_{i}^{c}\right\}, i=\{1, \ldots, n\}$, we can decompose all the probability mass into three parts:

$$
1=\sum_{A \subseteq B_{i}} m(A)+\sum_{A \subseteq B_{i}^{c}} m(A)+\sum_{\substack{A \cap B_{i} \neq \emptyset \\ A \cap B_{i}^{c} \neq \emptyset}} m(A)
$$

Hence for $E_{i}, i=\{1, \ldots, n\}$ the value $\pi^{\prime \prime}\left(E_{i}\right)$ equals:

$$
\begin{aligned}
\pi^{\prime \prime}\left(E_{i}\right)= & \lambda \pi\left(E_{i}\right)+(1-\lambda) \pi^{\prime}\left(E_{i}\right) \\
= & v\left(B_{i}\right)-v\left(B_{i-1}\right) \\
& +\lambda\left[v\left(B_{i-1}\right)+v\left(B_{i-1}^{c}\right)-v\left(B_{i}\right)-v\left(B_{i}^{c}\right)\right] \\
= & \pi^{\prime}\left(E_{i}\right)+\lambda\left[\sum_{\substack{A \cap B_{i} \neq \emptyset \\
A \cap B_{i}^{c} \neq \emptyset}} m(A)-\sum_{\substack{A \cap B_{i-1} \neq \emptyset \\
A \cap B_{i-1}^{c} \neq \emptyset}} m(A)\right]
\end{aligned}
$$

