
1 Sources of uncertainty and the ambiguity triangle

2 Setup

There is an outcome space X ⊆ R and a set of states S. We assume that S

covers all possible sources of uncertainty. An event E is any subset of S. Let

S be a σ-algebra of events. An act is a mapping f : S → X. The set of all acts

is denoted by F . There is a (binary) preference relation % over the set of acts.

In this paper we focus on the following simple setup. An urn with white

and black balls inside is given. We assume that N is the set of natural numbers

containing zero. Let n ∈ N be the number of all balls in the urn. Let b, w ∈ N,

such that b+w ≤ n be the number of known black and white balls in the urn,

respectively. Let W(b,w) ∈ S be the event of drawing a white a ball from an

urn with b known black balls and w known white balls. Similarly let B(b,w) ∈ S
be the event of drawing a white ball from an urn with b known black balls

and w known white balls. We assume after Chew, Sagi (2008) that a given

source of uncertainty is a collection of events which forms a partition of a state

space. From now on we assume that the overall number of balls n in the urn is

fixed. Thus {W(b,w), B(b,w)}, where b, w ∈ N, such that b+w ≤ n is a source of

uncertainty. The set of all sources of uncertainty in our setup will be denoted

by U . We thus have 1
2(n+ 1)2 number of possible sources of uncertainty.

Given a source of uncertainty {W(b,w), B(b,w)} ∈ U we will denote a typical

(ambiguous) prospect as (x,W(b,w); y,B(b,w)), where x, y ∈ X. The interpreta-

tion is the following: if I draw a white ball from the urn containing n white or

black balls in which I know that b are black and w are white and the colors

of the remaining balls are unknown to me then I get x as a prize. If from the

same urn I draw a black ball, then I get y as a prize. Each source of uncertainty

corresponds to a different ambiguous prospect. A prospect is defined as an urn

with n balls overall, in which the number w of white and the number b of black

balls are known to a decision maker, while whether the color of each of the

n− b− w remaining balls is white or black remains unknown.

For a fixed overall number of balls in the urn n we define an ambiguity

triangle as the set of all sources of uncertainty (ambiguous prospects) in the

possible (b, w) space, i.e.

∆A = {(b, w) ∈ N2|b+ w ≤ n}

We can normalize the ambiguity triangle so that it is expressed in terms of

lower probabilities (Walley, 1982) of drawing a black or a white ball (denoted
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by p
b

and p
w

, respectively):

∆′A = {(p
b
, p
w

) ∈ Q2|p
b

+ p
w
≤ 1}

where p
b

= b
n and p

w
= w

n .

The true probability of drawing a white ball pw belongs to the interval

[p
w
, pw], where p

w
denotes the lower probability of drawing a white ball while

pw denotes the upper probability of drawing a white ball. We assume that the

set of priors C is the the set of all probabilities lying between the corresponding

lower and upper probability.

2.1 λ-maxmin criterion

Let % satisfy the Ghirardato, Maccheroni, and Marinacci (2004) axioms. Then

f % g if and only if:

(1− λ) min
p∈C

Epu(f) + λmax
p∈C

Epu(f) ≥ (1− λ) min
p∈C

Epu(g) + λmax
p∈C

Epu(g)

where λ ∈ [0, 1] and C the set of priors are uniquely defined and u is unique up

to a strictly positive affine transformation.

Several examples:

1. Let f := (xu,W(0,0);xl, B(0,0)), where xu, xl, such that xu > xl be a win-

ning and a losing prize, respectively. Such a prospect corresponds to

complete ignorance (out of n balls no color is known). Then the proba-

bility of drawing a white ball pw is between 0 (the lower probability) and

1 (the upper probability). Hence the representation functional becomes:

(1− λ) min
pw∈[0,1]

Eu(f) + λ max
pw∈[0,1]

Eu(f) = (1− λ)u(xl) + λu(xu)

which is the Hurwicz rule.

2. Let f := (xu,W(b,w);xl, B(b,w)), where xl, xu, xu > xl, are the winning and

a loosing prize, respectively, and b+w < n. Such a prospect corresponds to

partial ignorance (out of n balls the color of fewer than n balls is known).

Then the probability of drawing a white ball pw is between w
n (the lower

probability) and n−b
n (the upper probability). W.l.o.g. we assume that

u(xl) = 0. Hence the representation functional becomes:

(1− λ) min
pw∈

[
w
n ,
n−b
n

]Eu(f) + λ max
pw∈

[
w
n ,
n−b
n

]Eu(f)

=
(
(1− λ)wn + λn−bn

)
u(xu) +

(
(1− λ)n−wn + λ bn

)
u(xl)

=
(

(1− λ)p
w

+ λpw

)
u(xu)
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3. Let f := (xu,W(b,w);xl, B(b,w)), where xl, xu, xu > xl, are the winning and

a loosing prize, respectively, and b+w = n. Such a prospect corresponds

to the situation of risk (no uncertainty) since the color of all balls in the

urn is known. Then the probability of drawing a white ball pw equals w
n .

The representation functional then becomes:

Eu(f) = w
nu(xu) + n−w

n u(xl)

pwu(xu) + (1− pw)u(xl)

which is the vNM Expected Utility.

3 Ghirardato, Maccheroni, Marinacci (2004) with

set of priors in the core and Subjective Expected

Utility.

Let f := (x1, E1; ...;xn, En) ∈ F , where xi < xj , for i < j, i, j ∈ {1, ..., n}.
Let pf : X → [0, 1] be the induced probability distribution of f , i.e. pf (x) =∑
s∈S,f(s)=x

p(s). This induced probability distribution is imperfectly known.

Proposition 3.1. Let the set of probabilities C be given by

C := {p ∈ [0, 1]n : p
i
≤ pi ≤ pi, i ∈ {1, ..., n}}

where p
i

is the lower probability of Ei and pi is the upper probability of Ei.

Then the GMM preference functional becomes:

(1− λ) min
p∈C

Epu(f) + λmax
p∈C

Epu(f) = Eπu(f)

where π : S → [0, 1] is the subjective probability defined as follows:

π(E1) = p
1

+ (1− λ)

(
1−

∑
i

p
i

)
π(Ei) = p

i
, i ∈ {2, ..., n− 1}

π(En) = p
n

+ λ

(
1−

∑
i

p
i

)

3.1 General formulation

We now proceed to a more general formulation with the set of probabilities C

being the core of a totally monotone capacity.
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Let S be a finite state space and S be an algebra of subsets of S, called

events. A function v : S → [0, 1] is a capacity if it satisfies the following three

conditions:

a) v(∅) = 0,

b) v(S) = 1,

c) A ⊆ B ⇒ v(A) ≤ v(B), for A,B ∈ S.

Condition c) is referred to as monotonicity (wrt to set inclusion). We will

henceforth assume that the capacity v is defined on the algebra S and consider

only the events that belong to S.

A capacity on S is k-monotone (k ≥ 2) if for any family of k-subsets

A1, ..., Ak of S, it holds:

v(∪i∈KAi) ≥
∑

I⊆K,I 6=∅

(−1)|I|+1v(∩i∈IAi),

where K := {1, ..., k}. A capacity is totally monotone if it is k-monotone for

every k ≥ 2.

Möbius transform of v is a function m : S → R defined by:

m(A) =
∑
B⊆A

(−1)|A\B|v(B), A ⊆ S.

Conversely, Möbius transform m uniquely characterizes v because:

v(A) =
∑
B⊆A

m(B), A ⊆ S.

A Möbius transform m satisfies: m(∅) = 0,
∑
A⊆S

m(A) = 1. If it also satisfies

m(A) ≥ 0, for A ⊆ S, then it is called a mass allocation function. Given a

mass allocation function m, the corresponding unique capacity is called a belief

function b.

Shafer (1976) has shown that a capacity is totally monotone if and only if

it is a belief function.

Let f := (x1, E1; ...;xn, En) ∈ F , where xi < xj , for i < j, i, j ∈ {1, ..., n}.
To avoid unnecessary complication we assume that S is an algebra induced by

the partition {E1, ..., En} of S. We assume that v is a totally monotone capacity

on S. It represents the decision maker’s knowledge about S. Let Core(v)

denote the set of all probability measures consistent with the decision maker’s

knowledge v. It is defined as a probability measure p such that p(A) ≥ v(A),
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for all A ⊂ S and p(S) = v(S). For any E ∈ S, we define p(E) = v(E) = m(E)

as a lower probability of E. For any S ∈ S, we define p(E) =
∑
A⊇E

m(A) as the

upper probability of E. The lower/upper probability of E is interpreted as the

lowest/highest possible probability value that can be assigned to the event E

that is consistent with the decision maker’s knowledge v. Let Bi := E1∪ ...∪Ei,
Gi := Ei ∪ ... ∪ En, for i = 1, ..., n denote the ”get at least as Bad as xi” and

”get at least as Good as xi” events, respectively.

Proposition 3.2. For a totally monotone capacity v, the following holds:

min
p∈Core(v)

Epu(f) = Eπu(f)

where π(Ei) = v(Gi)− v(Gi+1), for i ∈ {1, ..., n− 1}, π(En) = v(Gn) = v(En).

Proof. Since we are minimizing Epu(f) over probability measures p ∈ Core(v),

we want to assign the highest possible probability in the core of v to the event

E1 with the lowest prize x1. Hence

π(E1) = p(E1) =
∑
A⊇E1

m(A)

=
∑
A⊆G1

m(A)−
∑
A⊆G2

m(A)

= 1− v(G2)

Out of the remaining 1 − π(E1) =
∑

A⊆G2

m(A) probability mass we assign as

much as possible to the event E2. Continuing this way to each event Ei, i ∈
{1, ..., n− 1} we assign:

π(Ei) =
∑

Ei⊆A⊆Gi

m(A)

=
∑
A⊆Gi

m(A)−
∑

A⊆Gi+1

m(A)

= v(Gi)− v(Gi+1)

Finally, to the best event En we assign the lower probability of En:

π(En) =
∑

En⊆A⊆Gn

m(A)

= v(Gn) = v(En) = p(En)

Proposition 3.3. For a totally monotone capacity v, the following holds:

max
p∈Core(v)

Epu(f) = Eπ′u(f)

where π′(Ei) = v(Bi)− v(Bi−1), for i ∈ {2, ..., n}, π′(E1) = v(B1) = v(E1)
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Proof. The proof is very similar to the proof of Proposition 3.2. We assign

probability mass recursively in the following way: assign the highest possible

probability in the core of v to the event En with the highest prize xn:

π′(En) = p(En) =
∑
A⊇En

m(A)

=
∑
A⊆Bn

m(A)−
∑

A⊆Bn−1

m(A)

= 1− v(Bn−1)

Out of the remaining 1 − π′(En) =
∑

A⊆Bn−1

m(A) probability mass we assign

as much as possible to the event En−1. Continuing this way to each event Ei,

i ∈ {2, ..., n} we assign:

π′(Ei) =
∑

Ei⊆A⊆Bi

m(A)

=
∑
A⊆Bi

m(A)−
∑

A⊆Bi−1

m(A)

= v(Bi)− v(Bi−1)

Finally, to the worst event E1 we assign the lower probability of E1:

π′(E1) =
∑

E1⊆A⊆B1

m(A)

= v(B1) = v(E1) = p(E1)

Proposition 3.4. For a totally monotone capacity v and λ ∈ [0, 1], the follow-

ing holds:

λ min
p∈Core(v)

Epu(f) + (1− λ) max
p∈Core(v)

Epu(f) = Eπ′′u(f)

where π′′(Ei) = π′(Ei) + λ

 ∑
A∩Bi 6=∅
A∩Bc

i 6=∅

m(A)−
∑

A∩Bi−1 6=∅
A∩Bc

i−1 6=∅

m(A)

, and m is a mass

allocation function associated with the capacity v.

Proof. Observe that Bi = Gci+1, for i = {1, ..., n − 1}. Observe further that

for any partition {Bi, Bc
i }, i = {1, ..., n}, we can decompose all the probability

mass into three parts:

1 =
∑
A⊆Bi

m(A) +
∑
A⊆Bc

i

m(A) +
∑

A∩Bi 6=∅
A∩Bc

i 6=∅

m(A)
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Hence for Ei, i = {1, ..., n} the value π′′(Ei) equals:

π′′(Ei) =λπ(Ei) + (1− λ)π′(Ei)

=v(Bi)− v(Bi−1)

+ λ
[
v(Bi−1) + v(Bc

i−1)− v(Bi)− v(Bc
i )
]

=π′(Ei) + λ

 ∑
A∩Bi 6=∅
A∩Bc

i 6=∅

m(A)−
∑

A∩Bi−1 6=∅
A∩Bc

i−1 6=∅

m(A)
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